Project description
Reprogramming T cell exhaustion using synthetic logic circuits
T cells are an integral part of the immune system, recognising and responding to specific portions of foreign particles or altered cancer molecules. They eliminate pathogens and tumour cells directly and send messages to the rest of the immune system to enhance its response. Harnessing these T cells in anti-cancer therapies has shown limited efficacy in treating solid tumours, largely due to so-called T cell exhaustion. ‘Exhausted’ T cells begin to produce much lower amounts of immune response-stimulating proteins and are less able to kill tumour cells. The EU-funded T-FITNESS project will develop a novel approach to make T cells refractory to exhaustion using microRNA-based synthetic logic circuits to rewire the transcriptional networks responsible for it.
Objective
Cell and gene therapies offer a massive paradigm shift from current treatment options and hold the potential to cure previously untreatable diseases. Naturally-occurring and genetically modified T cells with chimeric antigen (CAR) or T cell receptors (TCR) have demonstrated remarkable curative capacities against advanced hematologic malignancies but have shown limited efficacy in treating solid tumors. Major barriers hindering the full antitumor potential of T cells are the immunosuppressive signals and persisting antigenic stimuli within the tumor microenvironment that inexorably push T cells into a highly dysfunctional state called “exhaustion”. Herein, we propose a groundbreaking technology, T-FITNESS, which will enable antitumor T cells to become refractory to exhaustion. At the core of the platform are microRNA (miRNA)-based synthetic logic circuits capable of rewiring the transcriptional networks orchestrating T cell exhaustion. By harnessing the power of CRISPR/Cas genome editing, we will integrate sensors of miRNAs upregulated in exhausted cells into untranslated regions of one or more transcription factors driving T cell exhaustion, to enable their fine-tuned downregulation. We will validate the reprogramming efficacy of T-FITNESS by performing extensive functional analyses in vitro and in vivo and advance the best circuits towards the clinic by developing an automated cGMP-compliant manufacturing process for point-of-care production of T-FITNESS-edited CAR-T cells. To develop this innovative platform, we will bring together a multidisciplinary consortium of academic and industry partners that combine their unique expertise in T cell therapy and immunology, synthetic biology, genome editing, cGMP manufacturing, bioinformatics, and communication. Easily integrable within CAR-T, TCR-T, and tumor-infiltrating lymphocyte (TIL) platforms, T-FITNESS will unleash the curative potential of T cell therapy for the benefit of an ever-growing number of cancer patients.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine immunology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- medical and health sciences clinical medicine oncology
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2021-PATHFINDERCHALLENGES-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
93053 Regensburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.