Project description
Improved hydrogen production with electrolysis of biomass rather than water
Electrochemical water splitting, or electrolysis, is a promising carbon-free way to produce hydrogen (H2). An alternative, electrocatalytic oxidation of biomass-derived molecules, could simultaneously reduce the energy cost and improve the chemical value of H2 production. The European Innovation Council-funded ELOBIO project intends to show this is possible with low-temperature functional electrolysers capable of large-scale production of both H2 and value-added decarbonised chemicals from cellulosic biomass. The prototype electrolysis cell will have a selective electrocatalytic cathode for the hydrogen evolution reaction and an electrocatalytic anode capable of selectively oxidising biomass-derived compounds. A social life cycle assessment will identify and enable the reduction of negative social, environmental and economic impacts.
Objective
The ELOBIO consortium aims at advancing biomass electrolysis as a novel technological mean of green H2 production. ELOBIO will demonstrate that electrocatalytic oxidation of biomass-derived molecules offers the possibility to simultaneously reduce the energy cost and improve the chemical value of H2 production compared to the current water splitting technology. ELOBIO targets the development of low-temperature functional electrolysers capable of a large-scale production of H2 and value-added decarbonized chemicals, originating from the cellulosic biomass renewable exploitation. The project will design, build-up, test and improve a lab-scale prototype electrolysis cell at TRL4 involving a selective electrocatalytic cathode for the hydrogen evolution reaction and an electrocatalytic anode capable of selectively oxidizing biomass-derived compounds. Aldose-type sugars and furanic compounds were selected as model biomass for the validation of the concept. These molecules will be selectively converted to value-added chemicals which can be valorised in various sustainable chemical processes such as the production of biopolymers. Furthermore, several emerging technologies rely on electrolysis assisted with an additional renewable source of energy (ultrasound, magnetic field) or coupled with the concept of electrochemical promotion of catalysis will be explored to further enhance the energy efficiency of the green hydrogen electrolytic production. The technological advancements achieved in ELOBIO will scrupulously follow the EU recommendations on critical material avoidance, circularity and decarbonation objectives. A precise and detailed social life cycle will allow to pinpoint and reduce the sources of negative social, environmental and economic impacts of the proposed technology and thus improve its sustainability.
Fields of science
Keywords
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Funding Scheme
HORIZON-EIC - HORIZON EIC GrantsCoordinator
75794 Paris
France