Project description
New chemical synthesis technologies
Electrochemical technologies involve the use of electrical energy to initiate or control chemical reactions, often leading to the production of valuable chemicals or materials. Electrochemical technologies are often preferred over traditional chemical methods because they can be more efficient, environmentally friendly, and require fewer steps in the manufacturing process. Funded by the Marie Skłodowska-Curie Actions programme, the MiEL project aims to combine the advantages of electrochemical technologies and microfluidics to develop synthesis technology for the chemical industries of the future. This technology will find application in the synthesis of fine chemicals or pharmaceuticals that are difficult to produce using conventional approaches.
Objective
In MiEL 10 (+2) doctoral candidates will develop synthesis technology for the chemical industries of the 21st century by combining the advantages of electrochemistry, micro process engineering and flow-chemistry. In theory, electrochemical technologies offer the highest energy efficiency in production as well as microfluidics offer the highest safety and best process control in chemical processes. A combination of these two technologies seems to be the logical step towards a more reliable, flexible, safe and sustainable chemical industry. Especially for the synthesis of fine chemicals or pharmaceuticals with relatively low output but specific chemistry like fluorination, this route offers some advantages in production. Three synthesis routes - 1) two-phase electrosynthesis, 2) aqueous and 3) non-aqueous electrolytes - will be investigated. These three reaction paths can be regarded as relevant model processes for pharmaceutical/fine chemical industry. The ambitious research objective is to upscale these technologies using integrated cell concepts such as printed circuit board technology (PCB technology) with integrated process control, with in-situ optimized yield control. The cells can be assembled in synthesis arrays for the safe, flexible and sustainable synthesis of chemical products, which can also be used for catalytic screening. This approach will allow to find new synthetic routes for the sustainable chemical industry of the future.
MiEls network is embedded into a highly specialized modelling community, which develops models on different length scales helping to simulate electrode structures with multi-phase flow of fluids, multi-electron step reactions, and electrochemical flow cells. A tecno-economical investigation provides guidance of all disciplines and ensures that the outcome of the project is to define the economic and ecologic “sweet spot” in applied electrosynthesis.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-DN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80686 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.