Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Enabling Virtualized Wireless and Optical Coexistence for 5G and Beyond

Project description

Efficient optical and wireless convergence for (beyond) 5G networks

The exponential growth in the use of bandwidth-hungry internet services requires new advances in optical data transmission technologies to achieve ultrahigh throughputs and minimal latencies. 5G systems – a combination of innovative radio and core network technologies – will integrate optical communications. Using an optical core to route 5G data raises significant questions about how wireless and optical technologies can coexist to provide smooth, end-to-end communication pathways. Funded by the Marie Skłodowska-Curie Actions programme, the EWOC project plans to develop a new converged optical wireless network solution, based on flexible and virtualised infrastructure, for the complete optimisation of resources for beyond 5G requirements. EWOC will target high-capacity, low-latency communications (40-90 GHz), providing the basis for a 50-fold improvement in spectral efficiency.

Objective

EWOC project aims at developing a novel converged optical wireless network solution relying on a flexible, virtualizable infrastructure, required for full resource optimisation beyond 5G (B5G) requirements. Fundamental innovation will be sought through merging of the enabling concepts of optical layer virtualization, high frequency mm-wave transmission, multiple antenna technology, cell densification, terra-over-fiber (ToF) based femtocell connectivity and cloud radio access network (C- RAN) architecture. EWOC will aim at high capacity, low latency communications (40-90 GHz frequency), providing the basis for a 50-fold improvement over the 5G baseline. This necessitates development of novel, femto-cell technology, and seamless coexistence with first round legacy deployment. Such scenario also requires novel channel models and simulation methodologies to attain the desired trade-off between coverage, throughput and densification limits. EWOC will rely on fiber-optic deployment towards ToF connectivity, as an “added on feature” for the C-RAN architecture supporting resource management of versatile services with varying demands. Scenario compliant optical fronthaul virtualisation techniques, designed to provide cost effective beyond state-of-the-art resource optimisation, will be pursued through novel optical transceiver schemes and software defined network-based digital signal processing techniques. Research and training
disciplines will serve as building blocks towards the scientific and socio-economic goals of increased capacity, coverage, flexibility, spectral efficiency, cost effectiveness, vendor agnosticism, and upgradability. EWOC provides a framework for promotion of such interdisciplinary innovation, with strong interoperability of models and methodologies from different disciplines. As such, EWOC training network is designed to foster opportunities for scientific and professional growth of ESRs from both topical and inter-disciplinary standpoints.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-DN-01

See all projects funded under this call

Coordinator

INSTITUTO DE TELECOMUNICACOES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 243 403,20
Address
CAMPUS UNIVERSITARIO DE SANTIAGO UNIVERSIDADE DE AVEIRO
3810-193 GLORIA E VERA CRUZ
Portugal

See on map

Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (10)

Partners (8)

My booklet 0 0