Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Learning with Multiple Representations

Description du projet

Fondements théoriques d’une nouvelle branche de l’apprentissage automatique

Financé par le programme Actions Marie Skłodowska-Curie, le projet LEMUR entend développer les fondements théoriques et un premier ensemble d’algorithmes pour une nouvelle branche de l’apprentissage automatique (AA) appelée apprentissage avec représentations multiples (LMR). Ces algorithmes LMR permettront des représentations flexibles (simples et justes) avec diverses fonctions cibles (impact environnemental et social) afin de garantir qu’elles soient conformes à la Charte verte et aux critères de confiance de l’IA par conception. Le projet se concentrera sur l’apprentissage avec une supervision réduite, abordant l’un des principaux défauts des approches AA modernes. LEMUR fournira à 10 experts une formation éminemment interdisciplinaire et intersectorielle pour mettre en œuvre la troisième vague européenne d’IA et les suivantes.

Objectif

Machine learning methods operate on formal representations of the data at hand and the models or patterns induced from the data. They also assume a suitable formalization of the learning task itself (e.g. as a classification problem), including a specification of the objective in terms of a suitable performance metric, and sometimes other criteria the induced model is supposed to meet. Different representations or problem formalizations may be more or less appropriate to address a particular task and to deal with the type of training information available. The goal of LEMUR is to create a novel branch of machine learning we call Learning with Multiple Representations. We aim to develop the theoretical foundations and a first set of algorithms for this new paradigma. Moreover, corresponding applications are to demonstrate the usefulness of the new family of approaches. We regard LEMUR as very timely, as LMR algorithms will allow to flexible representations (e.g. suitable for explainability, fairness) with diverse target functions (e.g. incorporating environmental or even social impact) so as to make the induced models abide by the Green Charter and trustworthy AI criteria by design. We will focus on learning with weak supervision because it addresses one of the major flaws of modern ML approaches, i.e. their data hunger, by means of weaker sources of labelling for training data. The outcome of the DN will be a set of 10 experts trained to implement the third and subsequent waves of AI in Europe. The highly interdisciplinary and intersectoral context in which they will be trained will provide them with research-related and transferable competences relevant to successful careers in central AI areas.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2021-DN-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITAET PADERBORN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 260 539,20
Adresse
WARBURGER STRASSE 100
33098 Paderborn
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Detmold Paderborn
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (9)

Partenaires (10)

Mon livret 0 0