CORDIS - EU research results
CORDIS

Pulsed Laser Light and Nano-encapsulated Ocular Dyes for Advanced Therapies in the Eye

Project description

A closer look at ocular therapies and advanced surgical interventions

Vision impairment is a major cause of disability. In Europe, an average of 1 in 30 people experience sight loss. Treatment of ocular diseases is a top priority today. However, the arsenal of medications remains rather restricted to traditional drugs despite improvements in pharmacological treatments. In this context, the EU-funded DYE-LIGHT project will explore new ways to deliver biotherapeutics and perform ocular surgery. Going beyond current methods that include eye drops and injections, the project will consider the use of pulsed lasers at much lower energy levels than currently used in ocular surgery in combination with nanoencapsulated vital dyes used by surgeons to stain tissues.

Objective

Ocular diseases affect the quality of life of millions of patients. Despite improvements in pharmacological treatments, the arsenal of medications to treat severe ocular diseases today remains rather restricted to traditional drugs. Use of most modern biotherapeutics like proteins and nucleic acids, could be a major step forward. However, current ways of administration such as eye drops and intravitreal injections, are no longer sufficient to deliver these drugs to most targets in the eye. Therefore, novel concepts allowing biotherapeutics to safely overcome ocular barriers are of high interest. In ocular surgery, pulsed-lasers (P-Ls) are used for ‘tissue cutting’, though safety concerns remain. DYE-LIGHT hypothesizes that strategies which would allow the use of P-Ls in the eye at much lower energy than today, could considerably improve safety and pave the way for both novel ocular therapies and advanced surgical interventions. DYE-LIGHT will explore vital dyes, as used by ocular surgeons to stain tissues, as photosensitizers. DYE-LIGHT follows the recent observation that P-L irradiation of ocular dyes can result in the formation of water vapor nanobubbles (‘dye-based nanobubbles’) and thermophoretic transport (‘dye-based thermophoresis’). Interestingly, these biophysical phenomena occur at a laser energy that is ~ 1000 times less than a P-L alone. As compared to free dyes, dyes encapsulated in nanocarriers are expected to penetrate less into the retina, which might improve safety. Therefore, focus in DYE-LIGHT will be on nano-encapsulated ocular dyes. DYE-LIGHT will explore the potential of dye-based nanobubbles for delivery of nucleic acids in the corneal endothelium and for spatial selective vitreolysis in the eye. Finally, DYE-LIGHT will explore dye-based thermophoresis for controlled transport of nanomedicines injected in the vitreous towards the retina. If successful, this might open new perspectives to improve the efficacy of retinal drug and gene delivery.

Keywords

Host institution

UNIVERSITEIT GENT
Net EU contribution
€ 1 499 351,00
Address
SINT PIETERSNIEUWSTRAAT 25
9000 Gent
Belgium

See on map

Region
Vlaams Gewest Prov. Oost-Vlaanderen Arr. Gent
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 499 351,00

Beneficiaries (1)