Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Scaling limits of particle systems and microstructural disorder

Project description

Disorder effects in scaling limits of particle systems

The ERC-funded PASTIS project focuses on the role of microstructural disorder in the dynamics of many-particle systems. Following the tradition of Hilbert’s sixth problem, the study aims at the rigorous large-scale derivation of theories from fundamental microscopic descriptions. To understand the disorder effects in scaling limits of disordered particle systems, five model problems that illustrate different aspects of the topic, including the effects of disorder on particle suspensions in fluids, irreversibility in the transport of mechanical particles in a disordered background, self-diffusion, and the emergence of glassiness, will be studied.The project combines the analysis of partial differential equations and probability theory, capitalising on recent progress in homogenisation and mean-field theory.

Objective

The present proposal focuses on the role of microstructural disorder in the dynamics of many-particle systems. Due to the complexity of such systems, any practical description relies on simplified effective theories. In the tradition of Hilbert’s sixth problem, I aim at the rigorous large-scale derivation of effective theories from fundamental microscopic descriptions. In those derivations, the role of microstructural disorder has often been overlooked for simplicity. However, disorder is key to many systems and can lead to new behaviors. Understanding its effects in scaling limits of particle systems is, therefore, of fundamental interest.

I have selected five model problems illustrating important aspects of the topic. The simplest regime is that of homogenization, where the effect of the disordered background averages out on large scales. For systems like particle suspensions in fluids, microstructural disorder is itself induced by particle positions; as these evolve over time, adapting to external forces, it can lead to nonlinear effects. Another aspect is the emergence of irreversibility: the transport of mechanical particles in a disordered background typically becomes diffusive on large scales, which gives for instance a microscopic explanation for electrical resistance in metals. I also consider the more intricate problem of self-diffusion, where irreversibility rather results from interactions with the ensemble of other particles themselves. A last important aspect concerns the emergence of glassiness, which results from the competition between interactions and disordered background.

Mathematically, this proposal is at the crossroads between the analysis of partial differential equations and probability theory and it builds on tremendous recent progress in two of my fields of expertise: homogenization and mean-field theory. Their combination provides a timely and innovative framework for new breakthroughs on scaling limits of disordered particle systems.

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

UNIVERSITE LIBRE DE BRUXELLES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 121 513,75
Address
AVENUE FRANKLIN ROOSEVELT 50
1050 Bruxelles / Brussel
Belgium

See on map

Region
Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 121 513,75

Beneficiaries (1)

My booklet 0 0