Project description
Improved models could shed light on binary star mergers
Neutron stars are extraordinarily compact remnants of supergiant stars that died in catastrophic explosions known as supernovae. How does matter behave in the densest possible surroundings? Funded by the European Research Council, the SMArt project aims to design robust theoretical models to explore the parameter space in neutron star mergers. This should enable researchers to impose accurate constraints on the equation of state of supranuclear-dense matter. The proposed algorithms should also allow determining gravitational-wave and electromagnetic emissions from binary neutron stars with high accuracy. This is crucial for matching theoretical computations with observational data.
Objective
What is the nature of matter at supranuclear densities? What is the expansion rate of our Universe? These open questions of nuclear physics and cosmology can be answered with multi-messenger observation of merging binary neutron stars. The window to study these fascinating events has only recently been opened with the upgrades of gravitational-wave observatories and by combining gravitational-wave information with that of powerful telescopes in the electromagnetic spectrum - from infrared, to optical, to gamma-rays. In the near future, we expect numerous multi-messenger observations of compact binary systems. We are currently at a crossroads in which the development of accurate and robust theoretical models is crucial to keeping up with the development of experimental instrumentation. Without noticeable upgrades of our models, future analyses will be biased through modelling uncertainties.
The proposed research project will focus on the development of theoretical models to interpret the binary neutron star coalescence and will pave the way for a thorough understanding of the merger process. Novel methods and algorithms that we will implement in our numerical-relativity code will allow us to study previously inaccessible regions of the binary neutron star parameter space with unprecedented accuracy. This accuracy in the determination of the gravitational-wave and electromagnetic emission from binary neutron star mergers is essential for connecting our theoretical computations with observational data. We will push for a publicly available framework for the simultaneous analysis of gravitational-wave and electromagnetic signals from binary neutron star mergers incorporating also nuclear-physics calculations, nuclear-physics experiments, and other astrophysical observations of isolated neutron stars. This framework will enable us to use upcoming detections to determine the neutron star radius and the Hubble constant.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesphysical sciencesastronomystellar astronomyneutron stars
- natural sciencesphysical sciencesastronomyphysical cosmology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
14469 Potsdam
Germany