Project description
Study on Sarkisov links could aid in algebraic variety classification
Birational maps are key to classifying algebraic varieties, determining whether they are isomorphic. Sarkisov links are special birational maps describing Mori fibre spaces, but little is known about them over a field in high-dimensional spaces (from three and above). The ERC-funded Saphidir project will seek to describe all Sarkisov links in any dimension and in non-classical settings. Focus will be placed on classifying Sarkisov links over the field of complex numbers and over a field of positive characteristic. Enriching knowledge about Sarkisov links will revolutionise the study of birational maps and provide exciting new tools to determine classes of algebraic varieties in several settings.
Objective
A fundamental goal of Algebraic Geometry is to classify algebraic varieties up to isomorphism. This is extremely hard, already for surfaces, and open in general. It has become clear that we can only hope for a classification up to birational maps, that is, isomorphisms between dense open sets. Understanding birational maps is therefore a key step towards the classification of algebraic varieties.
For one of the largest families of algebraic varieties, so-called Mori fibre spaces, any birational map between any two of them is composed of special birational maps called Sarkisov links. For surfaces over nice fields, Sarkisov links are well-understood, but little is known about them in dimension three or higher, over any field.
The understanding of Sarkisov links will mean an enormous advance in the study of birational maps and a substantial leap towards a classification of a large family of algebraic varieties.
The very ambitious aim of this project is to describe all Sarkisov links completely in any dimension and in several non-classical settings in terms of base-locus, contracted hypersurfaces and induced rational map on the bases of the implicated Mori fibre spaces. If achieved, it will revolutionize the study of birational maps and provide new exciting tools to determine classes of algebraic varieties in several settings.
In dimension three and higher, already the classification of Sarkisov links over the field of complex numbers is extremely ambitious.
Another very difficult task is to classify Sarkisov links over a field of positive characteristic, as the geometry of algebraic varieties over such fields is even more challenging than it is over the field of complex numbers.
The Minimal Model program, a major active research area in Biratonal Geometry, has made tremendous advances in the last decades. Recently developed ideas and techniques allow the attack on birational maps between algebraic varieties by studying Sarkisov links.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91190 GIF-SUR-YVETTE
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.