Descripción del proyecto
El estudio de los enlaces de Sarkisov podría ayudar en la clasificación de variedades algebraicas
Los mapas birracionales son clave para clasificar variedades algebraicas, determinando si son isomorfas. Los enlaces de Sarkisov son mapas birracionales especiales que describen espacios de fibras de Mori, pero se sabe poco de ellos sobre un campo en espacios de alta dimensión (de tres en adelante). El equipo del proyecto Saphidir, financiado por el Consejo Europeo de Investigación, se propone describir todos los enlaces de Sarkisov en cualquier dimensión y en entornos no clásicos. Se hará hincapié en la clasificación de los enlaces de Sarkisov sobre el campo de los números complejos y sobre un campo de característica positiva. Aumentar los conocimientos sobre los enlaces de Sarkisov revolucionará el estudio de los mapas birracionales y proporcionará nuevas e interesantes herramientas para determinar clases de variedades algebraicas en diversos entornos.
Objetivo
A fundamental goal of Algebraic Geometry is to classify algebraic varieties up to isomorphism. This is extremely hard, already for surfaces, and open in general. It has become clear that we can only hope for a classification up to birational maps, that is, isomorphisms between dense open sets. Understanding birational maps is therefore a key step towards the classification of algebraic varieties.
For one of the largest families of algebraic varieties, so-called Mori fibre spaces, any birational map between any two of them is composed of special birational maps called Sarkisov links. For surfaces over nice fields, Sarkisov links are well-understood, but little is known about them in dimension three or higher, over any field.
The understanding of Sarkisov links will mean an enormous advance in the study of birational maps and a substantial leap towards a classification of a large family of algebraic varieties.
The very ambitious aim of this project is to describe all Sarkisov links completely in any dimension and in several non-classical settings in terms of base-locus, contracted hypersurfaces and induced rational map on the bases of the implicated Mori fibre spaces. If achieved, it will revolutionize the study of birational maps and provide new exciting tools to determine classes of algebraic varieties in several settings.
In dimension three and higher, already the classification of Sarkisov links over the field of complex numbers is extremely ambitious.
Another very difficult task is to classify Sarkisov links over a field of positive characteristic, as the geometry of algebraic varieties over such fields is even more challenging than it is over the field of complex numbers.
The Minimal Model program, a major active research area in Biratonal Geometry, has made tremendous advances in the last decades. Recently developed ideas and techniques allow the attack on birational maps between algebraic varieties by studying Sarkisov links.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2022-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
91190 GIF-SUR-YVETTE
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.