Objective
Topological materials have captured the imagination of scientists with unique electronic dispersions and surface states. While their potential seems huge - from advanced photodetectors to spintronic devices - so far it has not come to fruition, despite two decades of research. In this proposal, my aim is to reveal and control light-matter interactions, electron populations, and currents in topological bands by combining two fields of research: topological materials and nonlinear optical coherent control.
Nonlinear quantum coherent control was a major leap in ultrafast science, enabling optical control of chemical reactions and electronic processes in atoms and molecules on femtosecond time scales. In solid-state systems, despite some pioneering experiments, coherent control has not been widely used. This is partially due to the complex band structures and partially because transport research has tended to be more easily applicable to the solid-state realm. Topological materials, however, are especially promising candidates for coherent control, because (a) it has proven hard to access properties related to the topology in 3D materials via transport, and (b) topological bands are associated with unique optical selection rules, and as recently revealed fascinating nonlinear optical phenomena.
In this project I will develop nonlinear coherent control of photocurrents in topological materials, thus building a bridge between nonlinear control to transport measurements of topological bands. I will use time-resolved ARPES a powerful tool providing band-imaging out of equilibrium to enable imaging of the photocurrents within the topological bands.
PhotoTopoCurrent will establish a new research direction, which will provide a deep understanding of the unique optical couplings and nonlinear optical responses of topological electronic bands, allow us to develop sophisticated optical schemes for tailored control, and finally implement them in transport devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences mathematics pure mathematics topology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69978 Tel Aviv
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.