Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Scalable Continuous Variable Cluster State Quantum Technologies

Project description

Scalable quantum technologies with continuous variables

Continuous-variable (CV) quantum systems use physical observables whose numerical values belong to continuous intervals. The recent generation and manipulation of CV cluster states, comprising thousands of entangled modes, paves the way for scalable CV quantum computing and networking systems. The EU-funded CLUSTEC project will work towards realising the full potential of CV cluster state technology by making conceptual and technical breakthroughs in three different directions. First, researchers will develop scalable optical platforms for massive CV cluster states by using advanced topological tools. New measurement induced CV quantum computational and networking protocols and algorithms will be developed. Ultimately, researchers will develop novel quantum error-correcting CV protocols and technologies that should facilitate the realisation of practical fault-tolerant quantum technologies.

Objective

Continuous variable (CV) quantum technologies have in recent years made significant impact on the fields of quantum communication, sensing, and computing, as signified by the detection of gravitational waves and demonstration of quantum advantage via Gaussian boson sampling. Moreover, the recent generation and manipulation of CV cluster states, comprising thousands of entangled modes, have direct implications for future developments of scalable CV quantum computing and networking systems. In CLUSTEC, we will pursue an interdisciplinary approach to unfold the full potential of CV cluster state technology by making conceptual and technical breakthroughs along three different directions. First, we will develop two complementary optical platforms for scalable generation of massive CV cluster states of different entanglement topologies and generation of hardware efficient error-correcting codes. The two systems will be based on a well-established low-loss fiber platform and the emerging, highly promising integrated photonics platform of thin-film Lithium Niobate. Second, we will develop and test radically new measurement-induced CV quantum computational and networking protocols and algorithms with certified quantum advantage and real-life applications. Third, we will explore and develop, theoretically and experimentally, novel quantum error-correcting CV protocols and technologies that facilitate the realization of practical fault-tolerant quantum technologies for quantum computing, communication and sensing with true scalability potential. With these activities, CLUSTEC will create a new path towards scalable quantum technologies and accelerate the development of practical quantum technologies with potentially radical impact on European society and economy. The results will pave the way for industrial uptake and exploitation in the near and long term, and in turn support the development of European leadership and autonomy in emerging strategic technologies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL4-2021-DIGITAL-EMERGING-02

See all projects funded under this call

Coordinator

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 014 058,75
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 014 058,75

Participants (7)

Partners (1)

My booklet 0 0