Project description
A renewables boost for power grids
A successful green transition hinges on the integration of renewable energy sources into the power grid. However, solar power, wind power and hydropower are vulnerable to microclimatic conditions. Their generation capacity varies based on the weather. It is this variability that makes renewable energy sources difficult to integrate. In this context, the EU-funded RESPONDENT project will address these challenges by developing AI and machine learning power generation and demand forecasting algorithms. In addition to renewable energy power conversion models, the project will consider weather data from space (Copernicus Earth observation), site-specific weather data and multiphysics models. Additionally, RESPONDENT will build Galileo-enabled phasor measurement units to measure the electrical signals of the grid in a precise and synchronised way.
Objective
Renewable Energy Sources Power FOrecasting and SyNchronisation for Smart GriD NEtworks MaNagemenT.
Renewable energy sources (RES) play a major role to the EU’s aspiration to transform to a climate-neutral economy. Their integration into the power grid is pivotal to the green transition and to the decarbonisation of the energy sector. However, as the most commonly used RES (solar, wind and hydropower) are also weather-dependent, their power generation capacity varies according to the local microclimatic conditions. This power production variability makes RES difficult to integrate into the power grid and to provide seamless, stable and secure amounts of power. On the other hand, power demand also affects the power grid operation, since there must always be a supply/demand balance in the power grid. Grid power imbalances can cause frequency fluctuations and other unwanted transient phenomena, which can compromise grid stability and operation. For that matter, advanced grid monitoring techniques have been developed, employing phasor measurement units (PMUs) to measure the electrical signals in a precise and synchronised way, based on a reliable timing reference. Yet, currently, no Galileo-based applications on PMU timing exist.
In the above framework, RESPONDENT comes to address the challenges of RES power generation forecasting, demand forecasting and smart power grid monitoring and supply/demand balancing. An AI/ML RES power generation forecasting algorithm is proposed, exploiting both Copernicus EO and site-specific weather data, along with renewable energy power conversion models. Furthermore, an AI/ML – multiphysics model for power demand of certain communities is also developed. Lastly, RESPONDENT will build a Galileo-enabled PMU and develop a monitoring module, in order to test and verify the advantages offered from the Galileo timing and synchronization services in smart grid monitoring, power balancing and overall operation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power transmission
- natural sciences computer and information sciences artificial intelligence machine learning
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.10 - Space, including Earth Observation
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-IA - HORIZON Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EUSPA-2021-SPACE
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
15 341 ATHINA
Greece
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.