Project description
Bringing AI into space
Space exploration’s future hinges on the ability to run AI algorithms in the harsh, radiation-laden conditions of the cosmos. While AI has revolutionised life on Earth, the delicate nature of these components and their vulnerability to space radiation has been a barrier to taking AI beyond our planet. In this context, the EU-funded ASAP project is pioneering space-hardy processors and developing the necessary software to unleash AI’s potential in space. Its five-fold mission includes identifying AI algorithms, creating space-worthy computing platforms, executing laboratory validations, crafting virtual environments for AI development, and paving the way for AI-powered space science and exploration. With ASAP, we’re on the brink of a new era in space technology.
Objective
A critical need for the future of space exploration is the ability to run artificial intelligence (AI) algorithms in situ under the harsh conditions of space. In recent years AI has been revolutionising industrial processes and everyday activities primarily because the computing power has reached a level that enables these algorithms to function. On the ground this is primarily due to the enormous investments in the development of high-performance graphical processing units (GPU) and of the optimised software needed for them. These are delicate devices that cannot be deployed in the harsh conditions of space and the transistor density of the components of a GPU would be too extreme to resist the radiations present in space.
ASAP takes on the task of using processors that can sustain the radiation environment of space to transfer to space operation AI algorithms that so far could only be run on the ground. ASAP will use the most advanced space-hardiness proven processors and develop the software needed to run AI algorithms on them. ASAP will show proof of principle functionality and will reach TRL-4.
ASAP focuses on five goals: 1) Working towards the identification and implementation of Machine Learning algorithms for the next generation space applications: a suite of candidate algorithms has been identified and will be evaluated during the project for their possible deployment to space; 2) Identification and development of a computing platform for ML algorithms producing a prototype hardware using only components that can operate under space conditions; 3) Definition of a validation plan and its execution in a laboratory validation campaign reaching TRL-4; 4) Implementation of a virtual environment to provide support to the development of ML algorithms; 5) Transforming the future development of technologies and scientific instrumentation for space science and exploration missions bringing artificial intelligence to space missions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy space exploration
- natural sciences computer and information sciences software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.10 - Space, including Earth Observation
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-SPACE-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 LEUVEN
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.