Project description
Innovative energy supply system for energy autonomous multi-family buildings
Apartment buildings can enhance their emission reduction potential by adopting efficient energy supply systems. With this in mind, the EU-funded Micro-Bio-CHP project will develop an innovative RES-based system for heat and electricity supply to achieve an almost energy-autonomous multi-family building. The project will integrate an innovative, highly efficient biomass micro-CHP technology based on an updraft gasifier, a new gas cleaning system, a solid oxide fuel cell (SOFC), a PV system as well as appropriate innovative energy storage solutions. This system will be economically attractive for future users and shall lead to virtually zero emissions of CO, OGC and dust as well as 55 % to 65 % reduced NOx emissions compared to other biomass CHP technologies.
Objective
The project aims at the development of an innovative RES-based system for heat and electricity supply in order to achieve an almost energy autonomous multi-family building with regard to heating and electricity consumption as well as electro-mobility. This shall be achieved by integrating a novel highly efficient biomass micro-CHP technology based on an updraft gasifier, a new gas cleaning system and a solid oxide fuel cell (SOFC), a state-of-the-art PV system and appropriate innovative energy storage solutions. This system shall be economically highly attractive for future users and it shall also distinguish itself by virtually zero emissions of CO, OGC and dust as well as 55% to 65% reduced NOx emissions compared to other biomass CHP technologies. Consequently, it shall increase the penetration of RES on the multi-family house level and has the potential to significantly contribute to reaching the EU climate and clean air goals.
The key innovations of the project are related to the novel micro-scale biomass CHP system. They comprise a flexible partitioning of product gas supplied to the SOFC and to a gas burner in order to cover the overall heat demand and to maximise SOFC operation at the same time, a novel combined thermal and catalytic tar reformer, new highly efficient and durable stack units and a novel compact SOFC system with integrated HCl and H2S removal reactor. Based on a 2.5 kWel SOFC with an electric efficiency of 44%, which is flexibly coupled with a 14 kW gasifier, overall efficiencies of more than 90% shall be gained. A TRL of 5 shall be achieved at the end of the project.
The methodology applied to reach these goals relies on technology development tasks (based on process simulations, CFD aided design of the single units, test plant construction, performance and evaluation of test runs), a technology assessment part covering risk, techno-economic, environmental and overall impact assessments as well as targeted dissemination activities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation combined heat and power
- engineering and technology environmental engineering energy and fuels
- medical and health sciences medical biotechnology cells technologies
- agricultural sciences agricultural biotechnology biomass
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.2 - Energy Supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2021-D3-03
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8020 Graz
Austria
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.