Project description
Reducing offshore wind and tidal turbine damage
Renewable energy solutions play a crucial role in our efforts to combat climate change, as they provide substantial electricity generation while minimising environmental harm. Regrettably, recent studies indicate that certain types of renewable energy sources might have detrimental effects on the environment, particularly offshore wind and tidal turbines. Despite their general reputation for ecological friendliness, these turbines have the potential to negatively impact marine life through acoustic damage. In this context, the ERC-funded off-coustics project aims to synergise relevant physical data and numerical simulations. This endeavour seeks to achieve a comprehensive understanding of the acoustic repercussions and their underlying nature. This overall goal is to enable energy production without any adverse effects on the local marine ecosystem.
Objective
For renewable energies to be sustainable in the future, their impact and harmful effects on the environment should be minimum. Recent evidences suggest that offshore wind and tidal turbines can have an acoustic damaging impact on marine life, due to the sustained generation of noise, which propagates very efficiently underwater.
Off-coustics combines numerical simulations and experiments to provide insights into the physics governing the aero/hydro-acoustic generation and propagation for offshore wind and tidal farms. Control of these physics will enable the design of silent offshore farms enabling renewable energy with zero acoustic impact.
First, I propose to develop a novel aero/hydro-acoustic solver, blending advanced high order numerical techniques through machine learning and trained with experiments, to simulate flow-acoustic signatures for wind and tidal turbines, in realistic offshore environments (including bathymetry, air-water surface, etc.). Second, an experimental campaign will generate aero/hydro-acoustic data for scaled turbines and farms to help elucidate the physics governing offshore acoustics and to guide/validate the flow-acoustic simulator. Third, simulations and experiments will be combined to characterise turbines in complex offshore environments and to develop physic-informed surrogate models. Fourth, using the developed surrogate models and optimisation, Off-coustics will propose new designs of silent farms that minimise the acoustic impact while ensuring energy production.
Major advances in multidisciplinary aspects are expected, including fluid mechanics, numerical simulations, optimisation, experimental acoustics, aero/hydro-acoustics and offshore wind and tidal turbine physics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28040 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.