Objective
The human mind understands visual scenes. We can usually tell what objects are present in a scene, we can imagine what the hidden parts of objects look like, and we can imagine what it would look like if we or an object moved. The first step of visual scene understanding is segmentation, in which our brain tries to infer which parts of the scene belong to which objects. Adults can do this in photographs – but photographs are not how we learned to see as infants. We learned to see by moving around in a 3D world. The way that scenes project into our eyes, how light is affected by the optics of our eyes, how our photoreceptors sample the light, and how we move our eyes all provide rich information about our environment. However, we do not know how adults combine all this information to perceive segmented scenes, and we do not know how infants learn this combination. Two reasons for this are that standard visual display devices cannot precisely mimic these factors, and that it is unethical to manipulate these factors in human infants. The goals of this project are to understand how adults use the rich information present in active 3D vision to perform segmentation, and to understand how this is learned. We will develop a new display device and experimental methods to study how adults segment scenes when realistic visual information is available, and develop ground-breaking new technologies using advanced computer graphics and machine learning to simulate the inputs to the visual system from early development to adulthood. We will then conduct in silico experiments in artificial neural networks to understand segmentation learning, by systematically restricting or manipulating different factors. We will compare the learned behaviours of different artificial networks to adults performing segmentation during active exploration of 3D scenes, and use similarities and differences to better understand a fundamental puzzle of perception: how the mind makes sense of scenes.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
64289 Darmstadt
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.