Project description DEENESFRITPL Advanced metamaterials Metamaterials are composite materials that are designed and manufactured artificially from units with specific properties and functions. These internal microstructures and their arrangement into specific geometries endow metamaterials with capabilities that are not possible with natural materials. Funded by the European Research Council, the CELICOIDS project aims to develop chiral metamaterials that lack mirror symmetry but can rotate electromagnetic waves. Such self-assembled metamaterials are of great interest in analytical chemistry and biology. Researchers will employ cellulose nanocrystals as a platform to generate them and functionalise them for additional applications. Show the project objective Hide the project objective Objective Chirality plays a fundamental role in natural sciences and pharmacology. The ability to detect chiral molecules relies heavily on inherently weak circularly polarized light-matter interactions. Such interactions are enhanced in the presence of chiral metamaterials, which exhibit extraordinary electromagnetic properties not observed in nature. To date, large and broadband circular dichroism in the UV-visible spectrum requires arrays of metallic nanohelices in order to combine internal and Bragg resonances. However, their fabrication relies on costly electron/ion beam lithography or physical vapor deposition, in which it is difficult and time-consuming to control nanoscale morphology over large areas. New types of helix metamaterials and engineering processes based on self-assembly concepts are absolutely necessary in order to be viable for future technologies. Nevertheless, self-assembled metamaterials with large, broadband and tunable chiroptical responses in the UV-visible region is a great challenge due to the required subwavelength feature sizes. To this end, the helicoidal morphologies of chiral liquid crystals provide the ideal platform for maximizing chiral light-matter interactions. The objective of CELICOIDS is to investigate the use of the chiral liquid crystal phases of cellulose nanocrystals with end-tethered polyoxyethylene analogues as templates for the fabrication of a new class of metamaterial, solid metallic nanohelicoids. A recent breakthrough that now makes this project possible is the discovery that such cellulose nanocrystal hybrids form chiral liquid crystal phases. As one of the very few researchers in the world with the combined expertise in cellulose chemistry, polymer grafting and colloidal assembly, I am the ideal candidate to achieve success. New functionalities are envisioned thereafter, applicable to future devices for invisibility cloaking, super-resolution imaging and chiral sensing, prompting a change in paradigm in metamaterials. Fields of science natural sciencesphysical sciencesopticsmicroscopysuper resolution microscopynatural scienceschemical sciencespolymer sciencesengineering and technologynanotechnologynano-materialsnanocrystalsmedical and health sciencesbasic medicinepharmacology and pharmacyengineering and technologymaterials engineeringliquid crystals Keywords liquid crystals cellulose self-assembly polymers Programme(s) HORIZON.1.1 - European Research Council (ERC) Main Programme Topic(s) ERC-2022-COG - ERC CONSOLIDATOR GRANTS Call for proposal ERC-2022-COG See other projects for this call Funding Scheme ERC - Support for frontier research (ERC) Coordinator UNIVERSITAT POLITECNICA DE CATALUNYA Net EU contribution € 1 998 313,00 Address Calle jordi girona 31 08034 Barcelona Spain See on map Region Este Cataluña Barcelona Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00