Project description
Advancing control and decision-making for complex processes
The field of Mixed-Integer Optimal Control (MIOC) is growing, but it still faces unanswered questions due to its complexity and inefficiencies. The ERC-funded SCARCE project aims to enhance optimal control and decision-making for dynamic nonlinear processes occurring on network structures. It delves into complex themes such as decomposition, relaxation, approximation, homogenisation, limiting processes, and weak topologies. Its goal is to discover efficient methods for estimating direct costs, developing nonlinear solvers, and creating decision policies capable of handling uncertainty in critical control tasks with societal impact. SCARCE aims to introduce new theories, develop numerical approximation methods, implement algorithms in software, and conduct proof-of-concept studies. The applications of this research extend to various fields, including energy networks, logistics, disease spreading dynamics, and biomedicine.
Objective
This project aims at making a breakthrough contribution in optimal control and decision making for nonlinear processes that take place on network structures and are dynamic in time and/or space. The setting has a wide range of potential domains of applicability, comprising thermal, electric, or fluid dynamics in energy networks, logistics, disease spreading dynamics, or cell signalling in biomedicine. The project will pursue the following objectives: To contribute new theory, to develop numerical approximation methods, to implement algorithmic methods in software, and to conduct proof-of-concept studies. Research in the young field of mixed-integer optimal control (MIOC) has recently seen increased momentum together with numerical approximation algorithms and control theory. Despite initial successes, key questions remain unsolved because of a lack of analytical understanding, a lack of tractable formulations, the unavailability of efficient solvers or the insufficiency of existing implementations. This project focuses on pivotal but poorly understood topics: decomposition, relaxation, and approximation; domains admitting homogenization and limiting processes using weak topologies; tractable approximations of direct costs of decisions; efficient distributed and parallel nonlinear solvers; and robustness of approximate nonlinear decision policies under uncertainty. These key issues appear systematically in a wide range of control tasks of high societal relevance. By addressing them, the project helps to bridge a persistent and pronounced gap in simulation & optimization practice. Due to non-trivial interactions emerging in theory and the unavailability of comprehensive algorithms, these topics cannot be suitably handled by merely combining the respective states of the art. A focused effort to decisively extend MIOC to optimal decisions for dynamics on networks is therefore a timely endeavour that will help to address the challenging demands of practitioners.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences mathematics pure mathematics topology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
38106 BRAUNSCHWEIG
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.