Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The key to precise and accurate cosmology: Simulating the physics that shapes gaseous haloes

Objective

Observational programs aimed at mapping the large-scale structure of the Universe, such as eROSITA and Euclid, are ushering in the era of Precision Cosmology. Our knowledge will soon transition from being limited by statistical errors, to being hindered by systematic uncertainties. These systematics arise from the theoretical modeling adopted to fit the data and the complex physics of galaxy formation, whose effects are often neglected. In fact, powerful feedback processes from supermassive black holes (SMBHs) affect the phase-space and thermodynamical properties of the gas within haloes and beyond, in turn modifying the expectations for the cosmological observables and the large-scale matter distribution.

In order to fulfill the potential of observational cosmology, we must take a far-reaching step forward by a) designing novel types of large-scale simulations that model gaseous haloes and the effects of SMBH feedback to unprecedented levels of realism and by b) providing quantitative and trustworthy — that is, physically-motivated and observationally-validated — prescriptions for cosmological analyses.

Starting from the well-validated IllustrisTNG hydrodynamical simulations, we will extend their scope to more massive systems with a new suite, TNG-Cluster. We will provide a library of baryon-informed formulae for cosmological constraints with galaxies, groups, and clusters as well as design novel observational tests for SMBH feedback models. Going beyond the state-of-the-art, we will develop numerical models that account for the effects of the multi-phase structure of the gas, of radiation, and of more sophisticated SMBH physics by using new simulation techniques and by complementing the AREPO code with on-the-fly machine learning-based methods. These will enable groundbreaking large-scale simulations, new types of comparisons to observations of both the hot and cold halo gas, and, ultimately, novel and independent analyses of available cosmological data.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-COG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 997 500,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 997 500,00

Beneficiaries (1)

My booklet 0 0