Objective
Isolating and addressing individual quantum systems has allowed for breakthrough results in quantum mechanics. Today, increasing the complexity of the system while maintaining control at the single-quantum level is vital for the next generation of quantum devices and research. QUINTESSEnCE will take up this challenge by developing interfaces between single photons, spins and phonons, all within one simple physical system, i.e. a single molecule.
Fundamental systems like molecules have the inherent advantage, in comparison to artificial structures, of being nominally identical. A molecule can have the coherence properties of an atom even when embedded in a solid, without losing the access and customization opportunities typical instead of the solid state. Molecules differ from atoms in being more complex systems, with rich energy diagrams structured over multiple scales. We propose to leverage this complexity to coherently connect optical frequency photons with microwave spin excitations and gigahertz phonons. Unprecedented control over the molecules’ degrees of freedom will be achieved by integrating them in nanostructured devices. We will develop a ground-breaking lab-in-a-molecule platform, benefiting from the tunability and scalability of molecules, so as to aim at the following main objectives:
• Complex states of light: integrating multiple molecular sources of indistinguishable photons on chip
• Single-molecule cavity optomechanics: accessing the regime of single-photon strong coupling in an unconventional cavity optomechanical system
• Optical addressing of single molecular spins: providing a crucial knob to read out and control the spin state of a single molecule
QUINTESSEnCE will therefore allow us to entering unexplored quantum territories and to develop quantum-technology tools unavailable today. Notably, the outcome of this project will impact a broad scientific community, touching quantum optics, optomechanics and molecular quantum technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics cavity optomechanics
- natural sciences physical sciences atomic physics
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.