Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Additive Manufacturing of Living Composite Materials

Project description

Developing living composites for high-performance engineering structures

Biological materials possess unique properties that make them attractive for use in engineering, including their ability to continuously adapt to their environment, lower embodied energy, and remarkable mechanical properties granted by their hierarchical structures. However, human-made materials have limited abilities to adapt and reinforce under load or to heal and repair in response to damage. The EU-funded AM-IMATE project will create living composites that bridge the gap between biology and lightweight engineering structures. Overall, this is an opportunity to bring together the fields of biology and engineering to develop innovative new materials that can meet the demands of modern technology. This could lead to major improvements in the performance of critical structures used in fields like aerospace and transportation.

Objective

I envision a world in which the responsive power of biological systems is harnessed through direct integration in materials and structures. Biological materials constantly adapt to their environment, display lower embodied energy, and possess remarkable mechanical properties granted by their hierarchical structures. Adapting these principles to human-made objects promises to disrupt the way we engineer our high-performance critical structures. However, todays engineering materials remain lifeless, and show only limited abilities to adapt and reinforce under load, or to heal and repair in response to damage. By addressing the lack of knowledge in (i) organism signalling, (ii) additive fabrication and (iii) responsive bio-inspired composites, I will be amongst the first to create living composites that will bridge the gap between biology and stiff, lightweight engineering structures.

To achieve my vision of living structures, I will cross boundaries between three previously disconnected disciplines. I will (i) exploit the intrinsic electrical activity of fungal mycelium networks to couple electrical and mechanical response in mycelium composite materials, (ii) enable complex shaping using new additive manufacturing technologies to create bio-inspired living objects augmented with sensing and vasculature networks, and (iii) develop topology optimised geometries and large-scale living structures that adapt and remodel during use. The project combines these aspects to exploit organism growth and function in a way never done before to realise stiff, tough, and responsive materials, while paving the way for a future of living material structures.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-COG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITEIT DELFT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 999 491,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 999 491,00

Beneficiaries (1)

My booklet 0 0