Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Using deep learning to understand computations in neural circuits with Connectome-constrained Mechanistic Models

Objectif

Advances in experimental techniques yield detailed wiring diagrams of neural circuits in model-systems such as the Drosophila melanogaster. How can we leverage these complex connectomes, together with targeted recordings and perturbations of neural activity, to understand how neuronal populations perform computations underlying behavior? Achieving a mechanistic understanding will require models that are consistent with connectomes and biophysical mechanisms, while also being capable of performing behaviorally relevant computations. Current models fail to address this need: Mechanistic models satisfy anatomical and biophysical constraints by design, but we lack methods for optimizing them to perform tasks. Conversely, deep learning models can be optimized to perform challenging tasks, but fall short on mechanistic interpretability.

To address this challenge, we will provide a machine learning framework that unifies mechanistic modeling and deep learning, and will make it possible to algorithmically identify models that link biophysical mechanisms, neural data, and behavior. We will use our approach to study two key neural computations in D. melanogaster. We will build large-scale mechanistic models of the optic lobe and motor control circuits which are constrained by connectomes and physiological measurements, and optimize them to solve specific computational tasks: Extracting behaviorally relevant information from the visual input, and coordinating leg movements to achieve robust locomotion. Our methodology for building, interpreting and updating these `deep mechanistic models' will be applicable to a wide range of neural circuits and behaviors. It will serve as a powerful hypothesis generator for predicting neural tuning and optimizing experimental perturbations, and will yield unprecedented insights into how connectivity shapes efficient neural computations in biological and artificial networks.

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2022-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

EBERHARD KARLS UNIVERSITAET TUEBINGEN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 997 321,00
Adresse
GESCHWISTER-SCHOLL-PLATZ
72074 Tuebingen
Allemagne

Voir sur la carte

Région
Baden-Württemberg Tübingen Tübingen, Landkreis
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 997 321,00

Bénéficiaires (1)

Mon livret 0 0