Project description
A new multisensing system for water pollution
Environmental water pollution is a growing global issue. The presence of harmful contaminants or pollutants in rivers, lakes, oceans and groundwater can pose a threat to the environment and public health. In this context, the EU-funded IBAIA project will develop a novel multisensing system that can monitor a wider range of parameters than existing solutions while being more cost-effective, reliable, and environmentally friendly. The system will be based on four innovative sensor modules that use complementary photonics and electrochemical technologies to detect organic chemicals, microplastics, salinity, physicochemical parameters, nutrient salts and heavy metals. The IBAIA system will offer a competitive alternative to non-EU solutions and contribute to the European Green Deal objectives.
Objective
Environmental water pollution is a growing global issue, leading to increasing regulations and concurrent increased demand for improved water quality monitoring solutions to meet the European Green Deal objectives. Real time in situ devices offers the promise of more rapid and efficient monitoring, and numerous such solutions are available from a wide number of primarily non-EU suppliers. However, existing in situ solutions detect very limited parameters, and are restrained by high costs, low reliability, and high energy usage. To better meet end user needs and improve environmental water quality monitoring, novel sensing technology is required. To this end, IBAIA will develop four innovative optimally functionalised sensor modules based on complementary photonics and electrochemical (EC) technologies. Mid-IR will be used to detect organic chemicals, Vis-NIR for microplastics and salinity, Optode technology for physicochemical parameters, and EC technology for nutrient salts and heavy metals. Leveraging consortium expertise in cutting edge material science, microfluidics, data processing and integration/packaging technology, these four sensors will be integrated and packaged into a single advanced multisensing system and validated by end users in real in situ conditions. The IBAIA system will more accurately monitor a wider range of parameters than existing solutions, whilst simultaneously being more cost effective, more reliable, more environmentally friendly to manufacture, and more user friendly to use. These dramatic improvements will manifest in an extremely competitive product that acts as a one-size-fits-all solution for many end users, with a highly EU-centric supply chain, that will supplant a wide number of inferior non-EU alternative solutions.
Fields of science
- natural sciencesearth and related environmental scienceshydrology
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesearth and related environmental sciencesenvironmental sciencespollution
- social scienceseconomics and businesseconomicssustainable economy
- natural sciencescomputer and information sciencesdata sciencedata processing
Keywords
Programme(s)
Funding Scheme
HORIZON-RIA - HORIZON Research and Innovation ActionsCoordinator
75794 Paris
France