Project description
A new multisensing system for water pollution
Environmental water pollution is a growing global issue. The presence of harmful contaminants or pollutants in rivers, lakes, oceans and groundwater can pose a threat to the environment and public health. In this context, the EU-funded IBAIA project will develop a novel multisensing system that can monitor a wider range of parameters than existing solutions while being more cost-effective, reliable, and environmentally friendly. The system will be based on four innovative sensor modules that use complementary photonics and electrochemical technologies to detect organic chemicals, microplastics, salinity, physicochemical parameters, nutrient salts and heavy metals. The IBAIA system will offer a competitive alternative to non-EU solutions and contribute to the European Green Deal objectives.
Objective
Environmental water pollution is a growing global issue, leading to increasing regulations and concurrent increased demand for improved water quality monitoring solutions to meet the European Green Deal objectives. Real time in situ devices offers the promise of more rapid and efficient monitoring, and numerous such solutions are available from a wide number of primarily non-EU suppliers. However, existing in situ solutions detect very limited parameters, and are restrained by high costs, low reliability, and high energy usage. To better meet end user needs and improve environmental water quality monitoring, novel sensing technology is required. To this end, IBAIA will develop four innovative optimally functionalised sensor modules based on complementary photonics and electrochemical (EC) technologies. Mid-IR will be used to detect organic chemicals, Vis-NIR for microplastics and salinity, Optode technology for physicochemical parameters, and EC technology for nutrient salts and heavy metals. Leveraging consortium expertise in cutting edge material science, microfluidics, data processing and integration/packaging technology, these four sensors will be integrated and packaged into a single advanced multisensing system and validated by end users in real in situ conditions. The IBAIA system will more accurately monitor a wider range of parameters than existing solutions, whilst simultaneously being more cost effective, more reliable, more environmentally friendly to manufacture, and more user friendly to use. These dramatic improvements will manifest in an extremely competitive product that acts as a one-size-fits-all solution for many end users, with a highly EU-centric supply chain, that will supplant a wide number of inferior non-EU alternative solutions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences earth and related environmental sciences environmental sciences pollution
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.2 - Key Digital Technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-DIGITAL-EMERGING-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.