Project description
Advancing diagnosis of sepsis at the point of care
Sepsis is a life-threatening medical emergency associated with an extreme reaction of the body to an infection. Although prompt diagnosis of sepsis is of utmost importance for survival, there is no single test available, and diagnosis relies on the detection of various clinical signs. To address this problem, the EU-funded AMBROSIA project aims to develop a point-of-care unit that incorporates photonic biosensors capable of detecting 7 different sepsis-related biomarkers. The sensitivity and cost-effectiveness of the system relies on disposable neural network modules that offer an accurate and intelligent approach to sepsis diagnosis at the point of care.
Objective
AMBROSIA aims to provide the foundations for a multi-sensing future-proof Point of Care Unit for sepsis diagnosis offered by a CMOS compatible toolkit and enhanced by on-chip photonic neural network technology to provide an accurate and rapid diagnosis. AMBROSIA will be investing in the established ultra-small-footprint and elevated sensitivity of integrated plasmo-photonic sensors reinforced by the well-known on-chip slow-light effect and micro-transfer printed lasers and photodiodes on Si3N4, as well as the functional processing and classification portfolio of integrated photonic neural network engines, towards painting the landscape of the next-coming disruption in sensor evolution, tailoring them in System-in-Package prototype assemblies, with the sensors being cheap disposable pluggable modules that can rapidly and accurately diagnose sepsis at the bedside in clinical environments. AMBROSIA targets to demonstrate a Point of Care Unit incorporating: i) a switchable sensor area array, with each sensor area facilitating a pluggable, 8-channel label-free plasmo-photonic sensor for sepsis diagnosis with a sensitivity over 130.000nm/RIU and a Limit of Detection below 10-8 RIU for each interferometric sensor, ii) an embedded Si3N4 photonic neural network processing and classifying at the same time the data from at least 7 biomarkers with zero-power providing in the first minutes an accurate and rapid diagnosis for sepsis, iii) Micro-transfer printed lasers and photodetectors on chip that will drastically decrease costs of both the sensing and neural network modules, and render the sensor arrays disposable.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental biotechnology biosensing
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.2 - Key Digital Technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-DIGITAL-EMERGING-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
546 36 THESSALONIKI
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.