Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

From conformal symmetries and integrability to the Electron-Ion Collider

Project description

Increasing the precision of research utilising the Electron-Ion Collider

The field of physics, across multiple subfields, has advanced significantly due to large-scale projects and key developments in areas such as computing. The Electron-Ion Collider (EIC) holds great promise for various research fields, but novel solutions are needed to fully harness its potential. The ERC-funded Conformal-EIC project aims to enhance the precision of predictions derived from deep-inelastic scattering (DIS) studies conducted on an EIC. By systematically applying conformal symmetry, integrability, and other advanced techniques to quantum chromodynamics results, the project will establish a critical methodology for more accurate and insightful research.

Objective

The primary goal of this research proposal is to lay the foundations for precision predictions for the physics program in deep-inelastic scattering (DIS) at the Electron-Ion-Collider (EIC). The commissioning of the EIC will open a new era in the exploration of the strong interaction physics and the hadron structure at an unprecedented level of detail. This is expected to lead, among other results, to the clarification of the proton spin puzzle. The crucial ingredient for the success of this undertaking is the ability to confront experimental data to precise predictions for a those benchmark processes, which will form a core part of the EIC physics program:
inclusive lepton-hadron DIS, including polarized beams; DIS charm- or bottom-quark production; deeply-virtual Compton scattering in off-forward kinematics. Capitalizing on recent theoretical advances, driven to a significant extent by the work of the PI, this proposal outlines a challenging and ambitious program to advance quantum chromodynamics (QCD) perturbation theory in order to achieve a theoretical description of the key observables at the EIC at percent level precision. The proposal puts forward a novel research methodology based on the systematic use of conformal symmetry and integrability, as realized in gauge theories with extended supersymmetry, such as the N=4 supersymmetric Yang-Mills (SYM) theory to reveal structural information on QCD results. Observables in lepton-hadron DIS are particularly well suited to turn the connections between N=4 SYM theory and QCD into a powerful computational tool, which leads to significant simplifications due to the hidden symmetries underlying integrable systems. Progress in this direction will open new avenues for research and will establish new bridges between the scientific communities in phenomenology and mathematical physics. The new QCD results will be used in the course of the project to explore precision phenomenology at the EIC.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-ADG

See all projects funded under this call

Host institution

UNIVERSITY OF HAMBURG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 841 438,00
Address
MITTELWEG 177
20148 Hamburg
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 841 438,00

Beneficiaries (2)

My booklet 0 0