Objective
We shall develop methods and models for analyzing quantum ergodicity in many-body systems, proving its stability against small perturbations, and studying ergodicity-breaking transitions due to integrability, disorder, or localized impurities. Ergodicity is a cornerstone of statistical mechanics and a key manifestation of many-body quantum chaos, while manipulating ergodicity and engineering ergodicity-breaking transitions will have immense applications (cf.scarred states in Rydberg arrays, heating transitions in Floquet systems, time crystalline phases of matter). PI proposed groundbreaking methods for establishing quantum ergodicity by rigorous analysis of spectral statistics, correlation functions, dynamical complexity indicators and entanglement on the basis of space-time duality. Most of current understanding of many-body physics or quantum fields is based on perturbative expansions around free, integrable or localized models. Here we propose a twist of paradigm: We shall study weak perturbations of statistically exactly solvable ergodic models, such as dual-unitary chaotic quantum circuits proposed by PI. An intuitive expectation of structural stability of ergodic dynamics (in analogy to rigorous results in classical ergodic theory) implies that such expansions typically have, unlike expansions around free/integrable models, finite radii of convergence. Various order parameters of the ergodic phase shall be developed and compared in their utility to signal and characterize ergodicity-breaking transitions. A related goal is a construction of exactly solvable models in which the eigenstate thermalization hypothesis can be proven. Being of fundamental importance in mathematical and statistical physics, the results are expected to have widespread applications across fields: from studying localization transitions in disordered systems, benchmarking quantum simulators and certifying quantum supremacy, to rigorous proofs of chaos in holographic models of black holes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1000 Ljubljana
Slovenia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.