Project description
Adenovirus vectors for clinical gene transfer
Gene therapy is a highly promising approach for treating certain diseases. Viral vectors have been developed stripped of their ability to cause disease and are instead used to deliver genetic material into cells for therapeutic purposes. Adenoviruses are particularly attractive because they can efficiently deliver DNA into both dividing and non-dividing cells. Funded by the European Innovation Council, the iAds project aims to overcome the limitations of adenoviral vectors, such as host immune responses and imperfect targeting. The consortium will create an in-silico platform for the design of intelligent adenovirus vectors with a focus on heart- and brain-specific targeting, addressing areas of unmet medical need.
Objective
Advanced therapies, and in particular gene therapies, hold great potential for treating diseases for which few options exist. Efficient gene transfer is inherently and intransigently linked to vector efficacy. Partially due to the lack of suitable delivery systems for particular applications, the success of too many gene therapies is limited.
Over the last two decades, immense progress has been made in the development of viral vectors. Importantly, this progress has also identified vector characteristics and biological factors that decrease efficacy. While limited efficacy is relevant for all vector platforms, it is more pressing in the case of adenoviruses because they have so much potential. In some cases, host responses and imperfect targeting have stunted adenovirus vector development for therapies that require long-term transgene expression.
Our multi-faceted consortium proposes an innovative approach to overcome these limitations and to construct a pathway for developing improved vectors for clinical gene transfer. By synergising French, Dutch, British, Spanish and Swedish expertise in structural biology, receptor engagement, neurobiology, cardiobiology, and bioprocessing, we will create in silico designed intelligent adenovirus vectors (iAds). Our disruptive concept abandons the classical approach of developing vectors from naturally occurring adenoviruses. Instead, a proprietorial adenovirus type will be serially stripped of unwanted elements to create a bank of iAds, which will then be engineered for heart- and brain-specific targeting. Our consortium blends academic ingenuity and SME/pharma manufacturing that will allow seamless clinical translation. With the support of the EIC Programme, our ground-breaking approach should revolutionise gene transfer and generate solutions in areas of unmet medical need via a platform that exploits the full potential of viral vectors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Funding Scheme
HORIZON-EIC - HORIZON EIC GrantsCoordinator
75794 Paris
France