Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

3D Biofabricated high-perfoRmance dna-carbon nanotube dIgital electroniCKS

Project description

Paving the way for scalable biotemplated electronics

The discovery of various nanomaterials has revolutionised information processing technology, enabling the creation of more powerful computers. Carbon nanotubes (CNTs) are particularly promising due to their excellent properties as channel material in transistors. Computers based on CNT field-effect transistors (FETs) are theoretically predicted to provide a power-performance improvement of 10 times over those based on traditional silicon-based CMOS technology. Biofabrication techniques, such as DNA-templated CNT arrays, have made it possible to further scale the alignment of CNTs within FETs, improving their performance even further. The EU-funded 3D-BRICKS project will move towards conceiving three-dimensional CNT FETs and CNT nonvolatile memories. This breakthrough technology will enable the production of scalable biotemplated electronics that can be extended to multiple applications.

Objective

Silicon-based CMOS technology is approaching its performance limits, but the demand for more powerful computers — driven by rapid advances in applications such as the Internet of Things, big data and artificial intelligence (AI) — remains. The discovery of various nanomaterials provides new opportunities to further develop information processing technology. Carbon nanotubes (CNTs) have, in particular, demonstrated excellent properties as a channel material in transistors. Computers based on CNT field-effect transistors (FETs) have been theoretically predicted to provide a power-performance improvement of ten times over computers based on Si-CMOS technology. However, the fabrication of high-performance CNT-nanoelectronics, and the realization of the full potential of CNTs, is highly challenging. A technological revolution would be a reliable approach to fabricate a new family of CNT-based devices that could enable aligned arrangement of the nanotubes avoiding the critical steps related to nanolithography. In particular, biofabrication using DNA-templated CNT arrays FETs has been demonstrated to further scale the alignment of CNTs within the FETs well beyond standard lithographic feasibility. 3D-BRICKS will raise this concept of integrated self-assembly CNT-nanocircuits to a completely new level by moving towards the third dimension. Indeed, the versatility of DNA nanotechnology will be the root for conceiving 3-dimensional (3D) CNT-FETs and CNT-nonvolatile memories. DNA nanotechnology will also enable to complement the CNT deposition with metallic connections, hence realizing a working circuit. This will reduce the foot-print of the final device while enhancing its efficiency, hence providing a breakthrough solution to realize the next-generation nanoelectronics. Furthermore, automated droplet-based CNT-DNA assembly, selective sorting and deposition based on assembly quality, will be an enabling technology towards upscaling production. Our approach will enable the production of scalable biotemplated electronics that can be extended to multiple applications such as metamaterials, sensors, optoelectronics, and others.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2022-PATHFINDEROPEN-01

See all projects funded under this call

Coordinator

FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 466 875,00
Address
VIA MOREGO 30
16163 GENOVA
Italy

See on map

Region
Nord-Ovest Liguria Genova
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 466 875,00

Participants (9)

Partners (2)

My booklet 0 0