Project description
New technology for the routine use of magnetoencephalography
Magnetoencephalography (MEG) is a non-invasive imaging method that detects magnetic fields that the brain naturally produces and is used to examine brain activity in humans. Although instrumental in the diagnosis of epilepsy and brain trauma, the use of MEG is currently limited due to its cost, space requirements, and need for specialised staff. Funded by the European Innovation Council, the OPMMEG project aims to improve the sensitivity of MEG by introducing innovative sensor technology. Additional advantages of this new technology include high performance, cost-effectiveness and manufacture at scale for widespread use in MEG. Project results will pave the way for the introduction of MEG in routine clinical practice.
Objective
Magnetoencephalography (MEG) is a non-invasive imaging technique for investigating human brain function, uniquely capable of
measuring brain activity with good spatial and temporal resolution. MEG operates by detecting magnetic fields naturally produced by
the brain, with no applied fields or injections. Epilepsy diagnosis is the most advanced clinical application for MEG. Six million people
are affected by epilepsy in Europe alone, with about 300 000 new cases every year. Use cases for MEG are growing, for example
diagnosis of mild traumatic brain injuries (TBI), which represents more than half of the 2.5 million new TBI cases each year in Europe. Clinical use of MEG is at present limited to large hospitals and elite clinics due to space, cost and the need for specialized cryogenics technicians.
Optically pumped magnetometers (OPMs) are a cryogen-free quantum sensor technology with extraordinary magnetic sensitivity.
Relative to cryogenic methods, OPM provide a superior balance of sensitivity, size and proximity to the cortex, but have not yet been
implemented in technologies that are simultaneously manufacturable at scale, high-performing, and cost-effective. OPMMEG will
develop an OPM array that meets these requirements for wide-spread use of OPMs in MEG, and demonstrate its application to
magnetoencephalography.
The project brings together world leaders in quantum sensor components and systems, commercial MEG systems and MEG
applications. OMPMEG will build a value chain from photonic devices to systems connecting all relevant stakeholders. The consortium
is composed of 2 SMEs, 2 world-class research organizations and 1 university from 3 European countries. The position of these
organizations in their respective markets guarantees that the project results will be widely exploited, providing the companies with a
technological advantage over their worldwide competitors thus creating new high-tech jobs and technology leadership in Europe.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- medical and health sciencesbasic medicineneurologyepilepsy
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Funding Scheme
HORIZON-EIC - HORIZON EIC GrantsCoordinator
02150 Espoo
Finland