Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology

Project description

Advanced bioimaging technology

There is an unmet worldwide need for accurate diagnosis and microscopic analysis at the point-of-care and in low-resource settings as existing infrastructure is cumbersome and expensive. Funded by the European Innovation Council, the DISRUPT project is developing a new lab-on-chip technology called 'integrated tomographic microscopy', which will revolutionise the field of biomedical imaging. By combining cutting-edge technologies and artificial intelligence, the consortium will develop tomographic microscopes that are much cheaper, lighter, and smaller. These improved microscopes are expected to find application in cancer diagnosis and research, as well as in telemedicine, offering improved resolution, sensitivity and energy efficiency.

Objective

DISRUPT aims at revolutionising the field of biomedical imaging by developing a radically new lab-a-on-chip technology: integrated tomographic microscopy. This unprecedented technique will be enabled by pushing forward the science of on-chip wireless photonics and tomography, in combination with microfluidics and artificial intelligence (AI). The CMOS compatibility of this technology represents a paradigm shift as it assures the realization of tomographic microscopes that are dramatically cheaper, lighter, and smaller than current approaches. Moreover, the singular features of the proposed solution introduce key advantages in terms of resolution, sensitivity, throughput, parallelisation, and energy efficiency. To illustrate its potential, we will show that on-chip TPM can be used for cancer detection and the identification of infected cells. Developments related to fundamental nanoantenna and diffraction tomography science, nanophotonics, nanofabrication, microfluidics, AI and clinical validation will be undertaken by a consortium comprised by 2 SME, 1 HE, 1 Non-profit RO and 2 Cancer R&D Medical institutions, with complementary expertise, leaders in their respective markets and R&D fields. This novel device is suited for many applications, such as early cancer diagnosis, cell characterisation, research on cancer and infectious diseases, immunocyte phenotyping, stem cell multipotency identification, tissue pathology, haematopathology, and analysis of infected cells. Its intrinsic mass-producible, compact, low-cost, mechanically robust, and energy-efficient feature makes this technology a future innovation driver for new developments in many biomedical application fields, and offers an alternative toolset addressing some of the emerging needs of microscopic analysis and diagnostics in low-resource settings, telemedicine applications and point-of-care, having a potentially huge societal impact fostering early diagnosis of cancer and other diseases and infections.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2022-PATHFINDEROPEN-01

See all projects funded under this call

Coordinator

DAS PHOTONICS SL
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 675 000,00
Address
CMNO DE VERA S/N PLANTA 2 EDIFICIO 8F
46022 Valencia
Spain

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Este Comunitat Valenciana Valencia/València
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 675 000,00

Participants (5)

My booklet 0 0