Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Nanoscale Integrated Magnetic Field Sensor

Project description

Optimising magnetic field sensors for use in more industrial applications

From transport to medicine, magnetoresistive sensors are a type of magnetic field sensor that has become ubiquitous. Designed to sense an applied magnetic field, these low-cost components are small and operate on very little power. However, several limitations keep them from reaching their full potential in a broad range of applications. Funded by the European Research Council, the NANOSENSE project intends to build on the proof of concept for a magnetic field sensor that has already been proposed and patented. It will demonstrate the sensor’s excellent performance, then follow this up with commercialisation and licensing involving a sensors manufacturer.

Objective

Magnetic sensors are present everywhere in our daily lives. We often use them in cars, robotics, medical applications, for power sensing, electronic compass, etc. Among them, magnetoresistive sensors play an increasing role thanks to their relatively small size, good sensitivity and low cost. However, magnetoresistive sensors saturate above typically a few milli-Tesla which is too low for a number of applications. Besides, reducing the sensor footprint is important in terms of costs. In addition, smaller sensors have also a reduced power consumption which is very important for wearable applications and sensors used in Internet of Things. Therefore, it is commercially desirable to be able to develop a low cost, nano-size, magnetoresistive sensor in which the dynamic range could be extended and easily adjusted in the range 80mT-400mT commonly used in linear or angular encoders.
Within an ERC project which just ended entitled CMOS/Magnetoelectronic Integrated Circuits
with Multifunctional Capabilities, a novel concept of magnetic field sensor sensitive to out-of-plane field was proposed and patented. Initial experiments performed within this ERC project provided very promising results. The purpose of this ERC project is to make a full proof of concept of this sensor demonstrating its outstanding performance and subsequently move towards a start-up creation or licensing of the technology to an existing sensors manufacturer. Within NANOSENSE, we aim to achieve gains over existing sensors by 10x in terms of footprint reduction, 50x in power consumption, 10x in signal to noise ratio while increasing the sensing range up to ~800mT. This will make these sensors suitable for integration in sensors network for IoT, sensors for wearable applications, automotive, detection of leakage current in electronic circuits, detection of microcracks in metals, navigation of surgical tools (e.g.endoscopes).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-POC2

See all projects funded under this call

Host institution

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
RUE LEBLANC 25
75015 PARIS 15
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0