Descripción del proyecto
Nuevos materiales aislantes topológicos magnéticos para aumentar el rendimiento de los detectores de fotón único
El objetivo del proyecto SuperPHOTON, financiado con fondos europeos, es crear y comercializar nuevos sensores cuánticos de luz ultrasensibles, que son fundamentales para el éxito y la proliferación de los ordenadores cuánticos. Las propiedades estructurales y electrónicas de los nanocables de niobio, que se utilizan de forma generalizada como superconductores para la fotodetección, no son adecuados para la lectura criogénica o a temperatura ambiente, lo que obstaculiza el despliegue escalable de tecnología cuántica. Los investigadores emplearán la deposición de láser pulsado y la epitaxia de haces moleculares a fin de desarrollar materiales aislantes topológicos magnéticos de gran calidad para prototipos de detectores de fotón único basados en superconductores, con altas eficiencias y fluctuaciones ultrabajas. Estos nuevos materiales topológicos podrían ayudar al equipo del proyecto a medir fotones a temperaturas extremadamente bajas.
Objetivo
Superconducting single photon detectors are critical components for emerging quantum technologies due to their high detection efficiencies, short jitter, photon number resolution, high maximum and low dark count rates. These devices may enable new ground-breaking applications in topological quantum computing and quantum internet. Niobium-based nanowires (Nb, NbN) are some of the most used superconductors for photodetection, but their material characteristics, device jitter and efficiencies cannot be effectively tuned or reproduced for scalable quantum technology deployment. The structural and electronic properties of these nanowires are not suitable for scalable cryogenic or room temperature readout. The challenges in growing high-quality quantum materials consistently provide a significant bottleneck against the development of quantum technologies that might efficiently interface with conventional microelectronics. In my ERC Grant (948063), we are using our pulsed laser deposition (PLD) and molecular beam epitaxy (MBE) expertise for magnetic topological insulators (MTI) and garnets for spintronic and superconducting devices with high conversion efficiency between electronic spins and charges. Here, I propose to develop three prototypes and obtain their patents: (1) Three MTI superconductor-based single photon detector prototypes with beyond state-of-the-art high efficiencies and ultralow jitter owing to the unique properties of MTI such as ultrafast sub-ps magnetization reversal, ballistic transport of Dirac electrons along the interfaces and integrated spin logic. (2) We are going to provide a steady supply of high-quality superconductor and spintronic films (NbN, MTI, and magnetic garnets) to accelerate basic and applied research, which is a market growing with about 20% annual rate. (3) A custom low-cost cryostat for 2-3K detector tests will be prepared with fiber optical and RF cable feedthroughs, electromagnets, readout electronics and software.
Ámbito científico
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical scienceselectromagnetism and electronicsmicroelectronics
- natural sciencesphysical sciencesopticslaser physicspulsed lasers
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programa(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Régimen de financiación
HORIZON-AG-LS - HORIZON Lump Sum GrantInstitución de acogida
34450 Istanbul
Turquía