Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

2D Topological Superconducting Single Photon Detector Devices

Descrizione del progetto

Nuovi materiali isolanti magnetici topologici per aumentare le prestazioni dei rivelatori a fotone singolo

Il progetto SuperPHOTON, finanziato dall’UE, si propone di produrre e commercializzare nuovi sensori di luce quantistica ultrasensibili, fondamentali per il successo e la proliferazione dei computer quantistici. Le proprietà strutturali ed elettroniche dei nanofili a base di niobio, pur essendo ampiamente utilizzati come superconduttori per la fotorivelazione, non sono adatte per la lettura criogenica o a temperatura ambiente, il che impedisce una diffusione scalabile della tecnologia quantistica. Utilizzando la deposizione laser pulsata e l’epitassia a fascio molecolare, i ricercatori coltiveranno materiali isolanti topologici magnetici di alta qualità per prototipi di rivelatori a fotoni singoli basati su superconduttori, con efficienze elevate e jitter bassissimo. Questi nuovi materiali topologici potrebbero aiutare il team a misurare i fotoni a temperature estremamente basse.

Obiettivo

Superconducting single photon detectors are critical components for emerging quantum technologies due to their high detection efficiencies, short jitter, photon number resolution, high maximum and low dark count rates. These devices may enable new ground-breaking applications in topological quantum computing and quantum internet. Niobium-based nanowires (Nb, NbN) are some of the most used superconductors for photodetection, but their material characteristics, device jitter and efficiencies cannot be effectively tuned or reproduced for scalable quantum technology deployment. The structural and electronic properties of these nanowires are not suitable for scalable cryogenic or room temperature readout. The challenges in growing high-quality quantum materials consistently provide a significant bottleneck against the development of quantum technologies that might efficiently interface with conventional microelectronics. In my ERC Grant (948063), we are using our pulsed laser deposition (PLD) and molecular beam epitaxy (MBE) expertise for magnetic topological insulators (MTI) and garnets for spintronic and superconducting devices with high conversion efficiency between electronic spins and charges. Here, I propose to develop three prototypes and obtain their patents: (1) Three MTI superconductor-based single photon detector prototypes with beyond state-of-the-art high efficiencies and ultralow jitter owing to the unique properties of MTI such as ultrafast sub-ps magnetization reversal, ballistic transport of Dirac electrons along the interfaces and integrated spin logic. (2) We are going to provide a steady supply of high-quality superconductor and spintronic films (NbN, MTI, and magnetic garnets) to accelerate basic and applied research, which is a market growing with about 20% annual rate. (3) A custom low-cost cryostat for 2-3K detector tests will be prepared with fiber optical and RF cable feedthroughs, electromagnets, readout electronics and software.

Meccanismo di finanziamento

HORIZON-AG-LS - HORIZON Lump Sum Grant

Istituzione ospitante

KOC UNIVERSITY
Contribution nette de l'UE
€ 150 000,00
Indirizzo
RUMELI FENERI YOLU SARIYER
34450 Istanbul
Turchia

Mostra sulla mappa

Regione
İstanbul İstanbul İstanbul
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
Nessun dato

Beneficiari (1)