Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Novel bio-inspired energy harvesting and storage all-in-one platform for implantable devices based on peptide nanotechnology

Project description

Peptide nanotechnology enables energy harvesting and storage for implantable devices

The human body is an excellent source of all kinds of energy including thermal, electrical and mechanical. Harvesting energy from the body for the body to use in implantable biomedical devices would eliminate the reliance on problematic lithium-ion batteries. The European Research Council-funded PepZoPower project will develop a biocompatible energy harvesting and storage device: relying on peptide nanotechnology, it will integrate the coordinator’s patent-protected piezoelectric and energy storage peptide-based supramolecular structures. Piezoelectric peptide-based assemblies will harvest mechanical energy from the human body and convert it into electric energy. The harvested mechanical energy will be stored by a biocompatible peptide-based supercapacitor. Applications could include cardiac defibrillators and spinal cord stimulators.

Objective

Over the past decades, implantable biomedical systems have greatly advanced, offering previously unavailable therapeutic options for millions of patients worldwide. Such applications most commonly utilize conventional lithium-ion batteries as the energy source. However, while readily providing adequate energetic performance, lithium-ion batteries are inflexible, rigid, may contain toxic substances, and require periodic replacement surgeries due to their limited capacity, posing both health risks and an economical burden. Here, aiming to address these issues, we will develop PepZoPower, a biocompatible energy harvesting, and storage device designed for biomedical applications. Energy harvesting will be facilitated by highly-efficient piezoelectric peptide-based assemblies allowing to harvest mechanical energy from the human body and convert it into electric energy. The harvested mechanical energy will be stored by a biocompatible peptide-based supercapacitor, thus giving rise to an autonomous, miniaturized, controllable, and biocompatible power device with adequate performance and mechanical properties. This ambitious goal will be achieved by utilizing our patent-protected piezoelectric and energy storage peptide-based supramolecular structures, to be incorporated into an integrated device. The performance of each layer will be optimized and the integrated PepZoPower device will be validated to verify efficient incorporation of the two components. We envision the breakthrough PepZoPower technology to serve as the basis for the next leap toward biocompatible, soft, miniaturized, light-weight and morphologically-controllable implantable devices. This will pave the way towards post-project commercial exploitation of the PepZoPower system, which will be further developed by a spin-off company to be integrated into implantable devices ranging from cardiac defibrillators to spinal cords stimulators, opening a huge market opportunity for this radically new technology.

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-POC2

See all projects funded under this call

Host institution

TEL AVIV UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 115 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0