Project description
Advanced electrolysers tackle hydrogen compression challenges
Electrolysis is the bedrock of hydrogen production. Electrolysers operating at high pressures help reduce the energy and costs required for the mechanical hydrogen compression. The EU-funded HYPRAEL project plans to develop advanced alkaline electrolysers for hydrogen production at elevated pressures. Immense increases in energy efficiency are also expected by raising the temperature to at least 120 degrees Celsius. Researchers will test the ability of various materials to withstand high temperatures and pressures. The most suitable will be produced at a large scale and integrated in an electrolyser stack for validation. Ultimately, the project is expected to improve hydrogen electrolysis and facilitate the availability of hydrogen as an alternative fuel.
Objective
Driven by the need to reduce the LCOH by avoiding energy and cost intensive downstream mechanical compression processes highly pressurised low temperature water electrolysers are required. HYPRAEL’s goal is to develop and validate the next generation of AEL for highly pressurised H2 production (at least 80bar and preferable 100bar). Additionally, an immense increase in energy efficiency will be possible by raising the temperature to at least 120ºC. This results in transforming classic electrolysers into innovative devices for next generation. HYPRAEL will achieve these goals and move beyond the SoA by performing research from the design and the advanced assessment of electrocatalysts and polymers to the engineering and process intensification of an innovative cell design in 4 phases: 1) Materials development for pressurized electrolysis with elevated temperature; 2) Screening of materials for applicability in pressurized electrolysers – both phases will be performed at lab scale/single cell 10cm2, 1-30bar, 80-120ºC; 3) Upscaling of the most promising developed materials in Phase 1 and 2; 4) Upscaling of developed materials and integration into an advanced stack. The validation of the components scaled up in Phase 3 will be performed in the existing test bench of FHa designed in the frame of Elyntegration at 60bar, 120ºC, 6-15kW (pilot scale) whereas the demonstration at the target pressure above 80bar, at a temperature of minimum 120ºC and in a cell stack of at least 50kW capacity will be develop by GHS in a new test bench. In addition, the HYPRAEL concept strong focus on developing an energy efficiency high-pressure electrolyser while addressing the circularity principle of the objectives of the EU for a carbon neutral economy. We believe – 2 EU reference research centers in the hydrogen field such as FHa and FhG and 4 benchmark industrial partners, GHS, AGFA, VECO and SOLVAY – that HYPRAEL will bring the next generation of AEL for highly pressurised H2 production.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis electrocatalysis
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences polymer sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JTI-CLEANH2-2022-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
22197 Huesca
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.