Project description
Advanced technologies for high-energy-density lithium-sulfur batteries
The European Green Deal has as a primary objective expediting the advancement of rechargeable batteries featuring exceptional round-trip efficiency to serve a multitude of applications. Despite the prevailing dominance of lithium-ion batteries in the market, their capacity for improvement is reaching its limits. This underscores the significance of the high energy density inherent in lithium-sulfur batteries, particularly for applications where weight is a critical factor. The EU-funded HEALING BAT project will create an array of self-healing materials, sensors and a customised Battery Management System. The aim is for these elements to collectively enhance the overall quality, dependability and lifespan of lithium-sulfur batteries, all the while mitigating and rectifying potential damages.
Objective
"Europe must re-emerge as a global leader in battery technology by accelerating the development of underlying essential technologies and allowing a European battery cell manufacturing industry. As required in the EU Green Deal, rechargeable batteries with high round-trip efficiency are a vital technology that permits energy storage for numerous applications. The lithium-ion chemistries now dominate the market for rechargeable batteries. However, these are near the end of their improvement limits. In this direction, the advantage of the high energy density of Li-S batteries is especially significant for novel applications, e.g. where weight is a crucial parameter. The project aims to develop and implement self-healing concepts and materials in the critical battery components used in conventional Li-S batteries and extrapolate the ideas to develop a new class of self-healing structural batteries based on Li-S by investigating at the cell & component level. It will be built a toolbox of self-healing materials, sensors, and a customized Battery Management System to maximize the performance of the produced Li-S battery in terms of Quality, Reliability, and lifetime and to avoid or repair occurring damages; The BMS's goal is to govern the flow of energy to and from the battery system, monitoring sensor data with computational methods to identify events indicating degradation, as well as initiate self-healing actions. The resulting solution will revamp the European sector of rechargeable batteries with high round-trip efficiency energy storage for numerous applications, as specified in the EU Green Deal, consequently promoting innovative ideas needed to develop future sustainable batteries which demand fewer resources and create the groundwork for EU competitiveness. The project will be aligned with the Battery2030+ large-scale initiative within their ""Integration of smart functionalities"" theme, which supports sensing and self-healing."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electric batteries
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.9 - Energy Storage
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2022-D2-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
44227 Dortmund
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.