Project description
A fundamental theory of nonlocal gravity
Funded by the Marie Skłodowska-Curie Actions programme, the NLQG project aims to develop a consistent theory of quantum gravity, one of the most outstanding unresolved problems in theoretical physics. Many existing approaches suggest that nonlocality – interactions that are not point-like but occur over a distance - could be key to understanding gravitational physics. Although the proposed study will be model-independent, its findings could limit the feasibility of various quantum gravity programmes. By deriving novel causality constraints and pioneering a complete one-loop computation of the quantum effective action, NLQG will advance nonlocal theories of gravity and pave the way for future applications in cosmology and astrophysics.
Objective
The formulation of a consistent theory of quantum gravity is one of the most outstanding unsolved problems in Theoretical Physics, which has attracted interest since the middle of the last century. In the past decades several promising approaches to quantum gravity have been proposed. Despite their intrinsic differences, many of them seem to predict the emergence of nonlocality at the microscopic level, i.e. at short distances and high energies, indicating that the gravitational interaction is nonlocal in nature rather than point-like. This feature could be the key to solving open issues in gravitational physics - such as classical curvature singularities and quantum divergences - as nonlocality naturally introduces a physical cut-off scale. Nonlocal physics is expected to manifest through specific non-polynomial form factors in the quantum gravitational Lagrangian whose derivation, however, is still pending in all known approaches. The aim of the proposed project is to derive and use fundamental consistency requirements of causality, stability, unitarity, and healthy high-energy behaviour to constrain the viable form factors, and thus the space of allowed quantum field theories of gravity. The study will be model-independent but its implications can severely limit the feasibility of various quantum gravity programs. This project will take the field of nonlocal gravity beyond its current state-of-the-art by deriving novel causality constraints, constructing for the first time the Hamiltonian for infinite derivative Lagrangians, and pioneering a complete one-loop computation of the quantum effective action. The unique scenario to test new physics beyond general relativity provided by the new era of precision cosmology and gravitational-wave astronomy makes this project highly timely. Achieving the proposed goals can place nonlocal theories of gravity on firmer ground and lay the foundation for future phenomenological applications in cosmology and astrophysics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences relativistic mechanics
- natural sciences physical sciences quantum physics quantum field theory
- natural sciences physical sciences astronomy astrophysics
- natural sciences physical sciences astronomy physical cosmology
- natural sciences physical sciences theoretical physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6525 XZ Nijmegen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.