Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Flexible Sensors for portable Magnetomyography: Envisaging innovation and Unveiling opportunities

Project description

Ultrathin, flexible magnetic sensors with unprecedented resolution

Flexible magnetoelectronics have emerged as promising technologies in biosensing and health monitoring. Technical challenges currently limit their functionality. With the support of the Marie Skłodowska-Curie Actions programme, the FlexiMMG project aims to address this, focusing on the magnetic signals of muscle activity as measured non-invasively with magnetomyography (MMG). It will use an ultra-thin flexible planar Hall-effect sensor for MMG, something that has not been done to date. With the goal of achieving unprecedented magnetic sensing resolution at room temperature, FlexiMMG aims not only to advance current MMG technology but also to enable the development of miniature, flexible and implantable MMG devices. These innovations are expected to significantly enhance human-machine interfaces and open new avenues in medical diagnostics and health care applications.

Objective

Flexible magnetoelectronic is a new and yet-to-be-explored path for future biomagnetic sensing especially to detect the ultra-low human magnetic field using magnetic field sensors. Most of the recent approaches have been framed using magnetoresistive (MR)- sensors, benefiting their fascinating applications, especially in the field of biomagnetism and advanced health monitoring systems, and unveiling several prospective and applicative domains. In this perspective, flexible MR sensing technology emerges as a new horizon in skin sensorics for recording and imaging various human electrophysiological phenomena such as magnetocardiography (MCG), magnetomyography (MMG), and magnetoencephalography (MEG). Despite its promising futuristic applicability in biomagnetism and healthcare monitoring system, this sensing technology manifests several technical challenges, which limits its versatile functionality, and needs to be addressed properly for the development of NEXT-GEN healthcare technology and biomedical or biomimetic devices.
In this proposed research, we intend to study the magnetic manifestation of human muscle activity, coined as MMG using an ultrathin flexible planar Hall-effect (PHE) sensor, which has not been explored or tested before. We aim to develop an efficient flexible sensing technology that enables us to detect a few pico-Tesla (pT)/ femto-Tesla (fT) signals at room temperature and demonstrates a feasible approach to reinvigorating the MMG technique. The proposed research directives also address the most awaited state-of-the-art sensing solutions to overcome the existing technical limitations in myograph recording. Moreover, this sensing technology offers qualitatively miniatured, flexible, and implantable futuristic MMG sensing devices and paves the way towards full-fledged on-skin touchless biocompatible interactive human-machine interfaces. In the next stage, we aim to extend this research for challenging MEG applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 189 687,36
Address
BAUTZNER LANDSTRASSE 400
01328 Dresden
Germany

See on map

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (2)

My booklet 0 0