Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

hiErarchical metal-orgaNic framework@covaLent organic framework (MOF@COF) on carbon nanofIbers for electrocatalytic CO2 conVErsioN

Project description

High-stability and conductivity electrocatalytic CO2 reduction reaction technologies

Amidst the ongoing efforts to combat climate change and achieve a successful green transition with a circular economy, electrocatalytic CO2 reduction (ECR) reaction technologies stand out as a promising solution for transforming CO2 waste into a valuable resource. Metal-organic frameworks (MOFs) have gained attention as effective catalysts for these reactions, with copper-based MOFs (Cu-MOFs) emerging as particularly promising due to their lower costs and ability to produce C2+ products. Supported by the Marie Skłodowska-Curie Actions programme, the ENLIVEN project will combine Cu-MOFs with covalent organic frameworks (COFs) known for their high stability and conductivity. This combination aims to address current limitations, pushing the boundaries of these technologies for broader implementation and more efficient CO2 reduction.

Objective

Electrocatalytic CO2 reduction (ECR) reaction offers a powerful strategy to enable a circular economy that converts CO2 from a waste to a useful resource. Among the possible catalysts for the ECR, metal-organic frameworks (MOFs) offer a tunable porous structure for rapid mass transport and easy access to a high density of catalytic sites, which can be tailored at the molecular level, leading to superior activity. Moreover, copper-based MOFs (Cu-MOFs) show relatively low cost and ability to form C2+ products. However, the low selectivity, poor stability and electrical conductivity set obstacles for ECR applications of these materials. The ENLIVEN project aims to surpass these limits, through the combination of Cu-MOFs with highly stable and conductive covalent organic frameworks (COFs) forming core@shell MOF@COF thin films on mesoporous conductive carbon nanofibers (CNFs). To this aim, CNFs prepared by electrospinning will be covered by a homogenous metal oxide layer and then pyrolysed to produce metal seeds for the solvothermal growth of homogeneous crystalline Cu-MOF-NH2 layers. Then, the NH2 functionalized surface will be modified with aldehyde groups necessary for the growth of a COF layer. To allow tuning the selectivity towards the ECR and decreasing the competing hydrogen evolution reaction, superaerophilic electrodes will be assembled using COF ligands with hydrophobic groups and designing a special morphology. Also, ENLIVEN will study the new confined chemistry that takes place inside the pores of MOF@COF architectures, rationally designed from the molecular- through nano- to meso-scale. This knowledge will provide the blueprints for the development of more durable and efficient electrocatalytic materials. The project will be conducted in UNIPD and DTU (secondment). The fellow (S.A.N.Najafabadi) with expertise in MOF/COF synthesis, will acquire new skills in the synthesis and characterisation of advanced structures for electrochemical applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

UNIVERSITA DEGLI STUDI DI PADOVA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 172 750,08
Address
VIA 8 FEBBRAIO 2
35122 PADOVA
Italy

See on map

Region
Nord-Est Veneto Padova
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0