Project description
Cooling solutions for a greener future
The urgency need for sustainable cooling alternatives has never been clearer. Traditional cooling systems, reliant on the compression and release of potent greenhouse gases, have become major contributors to global warming. With the support of Marie Skłodowska-Curie Actions, the SCOPE project aims to revolutionise the way we keep things cool. Caloric materials, a class of substances known for their unique thermal properties, are at the heart of this endeavour: they offer energy-efficient cooling without harmful emissions. Among these materials, barocalorics (BCs) stand out thanks to their impressive caloric effects and structural resilience. Overall, SCOPE explores the synergy of pressure and electric fields in polar barocaloric materials. By harnessing these multicaloric effects, it will enhance the efficiency and reversibility of BC cooling.
Objective
There is an increasing need to find novel and sustainable alternatives to current dominating cooling systems. These systems are based on the compression and expansion of powerful greenhouse polluters and thus contribute notably to global warming when released to the atmosphere. Caloric materials, which display thermal changes upon variations on the corresponding applied field, are promising candidates because 1) they can be energy efficient and 2) do not compel the direct use of greenhouse gases. Among the different caloric families, those sensitive to hydrostatic pressure (barocalorics (BC)) are of particular interest because of the wide range of candidates, their very large caloric effects and no mechanical breakdown. Nevertheless, BC materials suffer from high intrinsic irreversibilities that limit their caloric efficiency. Interestingly, some BC materials exhibit ferroelectric transitions that make them sensitive to the application of electric fields and, hence, display electrocaloric (EC) effects as well. The goal of this MSCA project is thus to take advantage of multicaloric effects to improve the caloric performance in polar barocaloric materials. To do so, for the first time we will simultaneously apply pressure and an electric field to these materials by performing unprecedented experiments of calorimetry and dielectric spectroscopy under these two fields. From these measurements, we will be able to define novel multicaloric routes to enhance the reversibility and, thus, report improved caloric performances. Additionally, a detailed characterisation of the lattice dynamics will be performed to understand the physical origin of these novel multicaloric strategies. This proposal joins the expertise in barocalorics of the Host Group and the expertise in electrocalorics of the Applicant. The successful achievement of our proposal will represent a breakthrough in the material science community, both at the fundamental and applied level.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering thermodynamic engineering
- natural sciences physical sciences classical mechanics fluid mechanics fluid statics
- natural sciences chemical sciences analytical chemistry calorimetry
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08034 BARCELONA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.