Objective
The formulation of drug nanocarriers has attracted increasing attention over the last decades. In particular, the possibility to combine
therapeutic and imaging functionalities in a single nanoplatform (theranostic) has been widely explored to advance therapeutic
approaches and promote the transition from conventional medicine to personalized medicine.
Drug nanocarriers, holding the potential to produce a revolution in medicine, are lipid nanoparticles (LNPs) for gene delivery. They
have proven versatility and efficacy even though today it is still not possible to predict and control their cellular uptake and targeted
delivery. One of the main unmet challenges of LNP formulations is increasing their cellular uptake and gene release into the cytosol.
Currently, it is possible to follow the fate of LNPs after administration only with the addition of labels (e.g. fluorophore) or specific
ribonucleic acid (RNA) sequence encoding for fluorescent protein. This results in the lack of possibility to follow the fate of LNPs once
administered in vivo with a non-invasive imaging technique. Theranostic strategies to deliver RNA and simultaneous imaging of
target organs is an important unmet goal.
Recently, it has been demonstrated that fluorination of components in gene delivery vehicles strongly improved their cellular uptake
and, most importantly, their gene endosomal escape. The fluorination strategies investigated so far use either -CF3 groups or long
linear perfluoroalkyl chains, but a tailored design of the fluorinated group could also endow the nanocarrier with excellent imaging
functions. In this context, FluoNeeD strategy is to tailor fluorination of LNPs in order to: (i) improve their therapeutic efficacy by
enhancing LNP cellular uptake and promoting gene endosomal escape; (ii) render LNPs trackable in vivo by 19F-MRI and in vitro/ex vivo by Raman microscopy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- social sciencespolitical sciencespolitical transitionsrevolutions
- natural sciencesbiological sciencesbiochemistrybiomoleculeslipids
- medical and health scienceshealth sciencespersonalized medicine
- natural sciencesbiological sciencesgeneticsRNA
- engineering and technologynanotechnologynano-materials
You need to log in or register to use this function
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
20133 Milano
Italy