Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Scalable quantum algorithms in highly noisy environments

Project description

Surpassing crucial challenges in quantum computing

Quantum computers offer a substantially greater computational capacity compared to classical computers. This enhanced capability enables the processing and resolution of significantly more intricate and expansive problems. However, this upsurge in computational prowess is accompanied by a drawback: the challenges of evaluating data accuracy amidst the complexity and volume of information. Consequently, the advantages conferred by this computational potency tend to be diminished. In this context, the MSCA-funded QSPEED project will formulate quantum algorithms tailored for operation within high-noise environments, all the while circumventing the necessity for error correction or mitigation techniques. The expected outcome is the facilitation of innovative, efficient algorithms, fostering a substantial advancement in computational power.

Objective

Quantum computers bring the promise of solving efficiently problems that would take a considerable amount of time on the best classical computers. This is called the quantum speedup. However, an experimental proof of a quantum speedup on a problem useful for society remains to be shown. One of the main issues preventing it to occur is the noise: the hardware is too noisy which makes the algorithms outputs unreliable. These algorithms are usually designed under the assumption that the qubits are perfect, and the errors are corrected or mitigated “afterwards”. However, mitigation techniques are typically not scalable (they stop working if the algorithm is too large). Quantum error correction is scalable but very challenging to implement as it requires very high quality qubits. This project aims to design quantum algorithms that, by construction, would efficiently work in highly noisy regimes, because of a noise-aware design without the need for error correction or error mitigation techniques. Our first objective will be to see if it is possible to carefully design quantum algorithms (by looking at how errors propagate in the circuits) for which the consequences of the noise will be that the experimentalist has only to re-run the algorithm a polynomial number of times, naturally preserving any exponential speedup. Our second objective will be to study the possibility to design algorithms operating on mixed-states that do not introduce any entanglement but nonetheless provide an exponential speedup. Because such algorithms would work with mixed-states without entanglement, they could also lead to interesting noise-resilience properties. For both of our objectives, we will aim to find useful applications for our algorithms, beyond the mere proof of concepts. Overall, our project could lead to a new class of quantum algorithms, noise-resilient from their very design, and would provide fundamental insights on the necessary ingredients allowing a speedup to occur.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

UNIWERSYTET WARSZAWSKI
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 139 953,60
Address
KRAKOWSKIE PRZEDMIESCIE 26/28
00-927 WARSZAWA
Poland

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0