Project description
The role of astrocytes in multisensory perception
The brain has a unique ability to combine information from the different senses to form a unified perception of the environment. This allows it to make fast and accurate responses to stimuli and is essential for spatial awareness, motor coordination and communication. With the support of the Marie Skłodowska-Curie Actions programme, the AstroScope project explores how astrocytes contribute to processing multisensory stimuli. The research team will employ cutting-edge imaging technology to analyse neurons and astrocytes across sensory regions and determine their interaction during multisensory perception. The project will also examine the role of acetylcholine in modulating astrocyte activity during attention-related tasks, potentially revealing astrocytes’ influence on behaviour.
Objective
To build a coherent representation of the world, the brain combines inputs from different sensory modalities in a process named multisensory integration. Multisensory processing involves computations distributed across brain areas and cell types and it is profoundly shaped by neuromodulation. Correct perception of our multisensory environment is highly beneficial for survival as it enables accurate responses to external stimuli. Sensory neocortical areas continuously encode, integrate and elaborate multisensory information even at the primary sensory level. In these areas, multisensory neurons respond to multimodal stimuli aligned in time and space. Astrocytes integrate signals coming from neuronal populations. In turn, astrocytes can modulate neuronal activity. These cells are thus ideally placed to integrate and mediate multisensory information. Yet, if astrocytes regulate sensory perception is unclear. Additionally, due to technical limitations, most studies of multisensory processing focused on single areas separately. With this project, I will reveal the role of astrocytes in encoding multisensory stimuli across sensory areas. This will be achieved by performing, for the first time, two-photon mesoscopic imaging on both neurons and astrocytes. With advanced computational methods, I aim to decipher if information about multisensory perceptual behaviour encoded by astrocytes is complementary to that in neurons. Additionally, stimulus detection relies on external input, but is also influenced by internal states, such as attention. Acetylcholine (ACh) is correlated with attention and affects neuronal circuit responses. Hence, I will test if astrocytes are behavioural state regulators by investigating if ACh release correlates with astrocytic responses during task engagement. In conclusion, I will combine state-of-the-art molecular and optical approaches with analytical methods to understand the role of astrocytes multisensory perception influences at the mesoscale.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
16163 Genova
Italy