Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Hybrid quantum-classical neural networks for the characterization of noisy intermediate scale quantum computers

Objectif

The objective of HyNNet NISQ is to develop tools based on hybrid quantum-classical algorithms for the characterization and measurement of quantum states prepared on near-term quantum computers.

Currently available quantum devices can perform computations that are challenging for classical computers. However, applications of quantum computers in science and economy require a further development of quantum hardware and algorithms. One of the major challenges is the measurement and characterization of quantum states produced as an output of quantum algorithms. Standard diagnostic techniques have become limited due to the quickly increasing system size and complexity of quantum devices. Here I will integrate adaptive quantum algorithms with classical artificial neutral networks to design hybrid quantum-classical neural networks. Employing machine learning techniques, I will train the hybrid neural networks to identify underlying characteristics of quantum states.

I will develop characterization and measurement tools required for the simulation of condensed matter physics and quantum chemistry on near-term quantum computers. First, I will investigate how to design and train hybrid neural networks to recognize quantum phases of matter, focusing on strongly correlated systems and topological order. Second, I will study how to exploit hybrid neural networks to reconstruct the full quantum state describing all properties of a quantum system. I will use this technique to efficiently measure quantities required for condensed matter physics and quantum chemistry simulations. The hybrid neural networks developed here can be readily realized on near-term quantum computers. Therefore, they will provide key tools for the development of quantum algorithms and next-generation quantum hardware.

I (Dr. Petr Zapletal) will carry out the proposed research with the input and advice from Prof. Christoph Bruder (University of Basel) and Prof. Michael J. Hartmann (FAU Erlangen-Nuremberg).

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2022-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 218 666,88
Adresse
FREYESLEBENSTRAßE 1
91058 ERLANGEN
Allemagne

Voir sur la carte

Région
Bayern Mittelfranken Erlangen, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Partenaires (1)

Mon livret 0 0