Objective
The field of computing saw a breakthrough when quantum supremacy was established, and it was demonstrated that a classical computer will take 10,000 years for a task that a quantum processor based on superconducting qubits took 200 seconds. The future generation of computing hardware that can deliver high performance parallel computing include (i) High performance superconducting circuits-based computing hardware and (ii) quantum processors based on superconducting qubits. Key components of these technologies, like Superconducting Nanowire for Single-Photon Detectors (SNSPDs), cryogenic interconnects and ground plane electronics, use SUperconducting Nitrides (SUNs) such as NbN, TiN and NbTiN. However, despite the heavy reliance on SUNs, optimal deposition processes to engineer these materials to meet the challenges of the technology are still lacking. The desirable process should be able to engineer the features of conformality, provide continuous, pin-hole free films with controlled thicknesses between 2-5 nm, occur at low temperatures and in some applications provide selectivity to reduce the patterning overhead.
This project addresses this gap in SUN material engineering by generating scientific understanding that is pivotal to enabling the quantum processors in the future. We intend to do so by investigating novel chemistries and sequences of Atomic Layer Deposition (ALD) coupled with surface functionalization in order to enable the fabrication of CMOS industry compatible, area Selective ALD at Low Temperature (SALT) of the widely used SUNs of NbN, TiN and NbTiN. This project will increase the understanding of ALD using reducing agents and inhibitors, advance the science of area selective ALD and enable higher fidelity qubits. Therefore, this research contributes to advancing chemical science and caters to the critical needs of the superconducting digital electronics as well as quantum processor hardware since SUNs are ubiquitous to both technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences chemical sciences inorganic chemistry post-transition metals
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3001 Leuven
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.