Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Hyperpolarized NMR made simple

Objective

Nuclear magnetic resonance (NMR) is one of the most powerful analytical techniques currently available, with applications ranging from synthetic chemistry to clinical diagnosis. Despite the progress in developing new systems, applications are often limited by the low sensitivity of NMR. Hyperpolarization techniques have the potential to overcome this limitation and revolutionize the use of compact NMR. However, the state-of-art devices for hyperpolarization are limited by either the need for cryogenic cooling, long setup and polarization times with the risk of experimental failure, costly systems, cumbersome equipment, and a limited range of polarizable molecules.

MAGSENSE project significantly simplifies the existing Hyperpolarized NMR paradigm. Our unique approach is to produce spin order in standard hydrogen molecules to act as polarization batteries. The NMR sample with the enhanced target molecules is placed in a standard NMR spectrometer for ultrasensitive analysis. No modifications are required to the customers existing NMR instrumentation. MAGSENSE provides significant advantages in signal enhancement and measurement times, enabling the analysis of intermediate steps in the chemical reaction.

MAGSENSE will provide many new opportunities for the fields of Synthetic chemistry, Analytical chemistry, and NMR research. It will be a market-creating innovation with Point-of-service applications, such as diagnosis in ICU units.

The project will create opportunities for young researchers in the NMR field through our engagement with Universities and Technology institutes. At the same time, interested industry players have shown their support for the project.

NVision is backed by leading deep-tech VC funds from the US and Europe and currently employs more than 25 physicists, engineers, and material scientists. Including professionals with more than 10 years of experience in NMR research, technology development, and project management.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2022-TRANSITION-01

See all projects funded under this call

Coordinator

NVISION IMAGING TECHNOLOGIES GMBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 451 913,75
Address
WOLFGANG-PAUL-STRASSE 2
89081 ULM
Germany

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Baden-Württemberg Tübingen Ulm, Stadtkreis
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 451 913,75
My booklet 0 0