Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multidimensional in vivo metabolic flux analyses: Resolving immune cells based on in vivo metabolic phenotypes

Project description

Advancing metabolic insights for immunotherapy

Metabolism is crucial for the effective function of all cells, as it dictates energy production. In immune cells, this translates to tasks such as the killing of cancer cells. The working hypothesis of the ERC-funded 4Dplus_Metaflux project is that the efficacy of immunotherapies depends on the cell metabolism at disease sites such as solid tumours where metabolic stress may hamper immune cell function. Researchers build on a novel assay that measures nutrient uptake with single-cell resolution. This assay can help measure three nutrients in immune cells at disease sites and provide critical insights to improve immune-based therapies.

Objective

The development of better immunotherapies is being hammered by our lack of understanding about immune cell metabolism in vivo at the sites of disease. We know that immune cell metabolism is pivotal in controlling immune function. For instance, disrupting Natural Killer cell metabolism prevents them from killing cancer cells. Cellular immunotherapies for diseases like solid cancer are underperforming and one central reason for this is the metabolic pressure exerted on immune cells in solid tumours. The core problem is that we cannot currently measure the metabolism of immune cells at the site of disease. As a result, the biopharma industry is ill equipped to design immmunotherapies that are effective at these sites in the face of the metabolic stress.
My ERC-CoG project (DC_Nutrient) has developed a new type of nutrient uptake assay with single cell resolution that can be used to probe metabolism in vivo. This is highly informative because the uptake of nutrients is the first limiting step for cellular metabolism. The core advance in our approach is to use bioorthogonal chemistry to attach a fluorophore to the nutrient after it has been transported into the cell. This bypasses all the pitfalls and failings of previous attempts to develop such assays using fluorophore tags.
This PoC will advance this technology to simultaneously measure the uptake of 3 separate nutrients into immune cells at the site of disease, all with single cell resolution. Combined with an in vivo measurement of protein translation this will provide 4 dimensions of metabolic flux analysis for each cell analysed by multiparmetric flow cytometry. This innovative idea will provide a licensable assay technology that will be of high value to the biopharma industry as it will enable preclinical mouse studies to gain a detailed understanding of the metabolic changes occurring in immune cells at the site of disease. This technology will drive innovation towards metabolically enhanced immunotherapies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-POC2

See all projects funded under this call

Host institution

THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD, OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
COLLEGE GREEN TRINITY COLLEGE
D02 CX56 Dublin
Ireland

See on map

Region
Ireland Eastern and Midland Dublin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0