Skip to main content
European Commission logo print header

Bulk-like Joints by Gas Actuated Bonding

Objective

In this project I will develop a novel concept and new understanding of metal joining through use of chemical gases. In this concept, chemical vapour transport (CVT) technology is unconventionally used to induce a transient liquid phase that could form joints with greatly enhanced mechanical and anti-corrosion properties.

In metal joining a continuous metallic phase must bridge two parts, but current bridging phases are weaker and more prone to corrosion than the materials from which the components are made. This shortens the lifespan in harsh environments and new avenues need to be explored. My preliminary data show that it is possible to:
1) induce a transient liquid phase, by
2) exposing metal surfaces to melting point depression element (MPD) precursors gases, using
3) chemical vapour transport technology.

The concept will result in joints made from the bulk material itself, hence both joint and bulk obtains the same surface oxide and microstructure, leading to best possible corrosion resistance and strength.

In this project, in-situ characterisation will be used to improve our understanding of chemical vapour technology for processing metals and their oxides. Benefiting from this knowledge, and the production of small components for testing fundamental properties and evaluating performance, I will discover the mechanisms in, and create models for, CVT alloying as well as identify the properties of the novel joints.

To ensure a wide application of research results, I will investigate the joints in corrosive settings, targeting the demanding environments found in solar thermal energy storage, solid oxide fuel cells, and fossil free steel production. This novel joining concept could also revolutionise the manufacturing of small, complex, and high-performing equipment, as difficult-to-join alloys could thus be used in difficult-to-manufacture components. Such components are found in turbine engines, medical equipment, and sensor technology.

Host institution

LUNDS UNIVERSITET
Net EU contribution
€ 2 300 000,00
Address
Paradisgatan 5c
22100 Lund
Sweden

See on map

Region
Södra Sverige Sydsverige Skåne län
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 2 300 000,00

Beneficiaries (1)