Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

The Mathematical Analysis of Extremal Black Holes and Gravitational Radiation

Descripción del proyecto

Abordar cuestiones fundamentales de la relatividad general a través de herramientas matemáticas avanzadas

Las ecuaciones de Einstein, un sistema de ecuaciones diferenciales parciales no lineales, resultan fundamentales para comprender la dinámica gravitatoria en la relatividad general. Los recientes avances en ecuaciones diferenciales parciales, geometría diferencial y análisis microlocal han ahondado la comprensión de la dinámica gravitatoria. El proyecto ExBHGravRad, financiado por el Consejo Europeo de Investigación, se centra en dos problemas matemáticos clave. En primer lugar, se examinará la estabilidad e inestabilidad de los agujeros negros extremos de Kerr, que son objetos que giran rápidamente en el límite entre los agujeros negros y las singularidades desnudas. Resolverlo podría desvelar cómo se comportan estos agujeros negros extremos cuando se ven perturbados. En segundo lugar, se investigarán las colas tardías en la radiación gravitatoria analizando la dinámica de las perturbaciones tanto en el espacio-tiempo plano como en el espacio-tiempo de los agujeros negros. La investigación propuesta podría hacer avanzar la comprensión de la fuerte conjetura de censura cósmica.

Objetivo

"The Einstein equations constitute a system of geometric, nonlinear partial differential equations that describe gravitational dynamics in the framework of Einstein's theory of general relativity. The last decade has seen tremendous progress towards understanding dynamical aspects of the Einstein equations. At the mathematical level, great insight has been gained due to recent advances in the study of partial differential equations, differential geometry and microlocal analysis. The present proposal builds upon these advances in the context of the following two mathematical problems.

Stability and instability of extremal black holes: Extremal Kerr black holes describe rapidly rotating solutions to the Einstein equations. They sit at the transition between black holes and ""naked singularities"" and exhibit critical geometric features.

This proposal addresses the stability and instability properties of extremal Kerr black holes and is motivated by recent advances by the PI, which cover linear and nonlinear aspects. A successful resolution would give fundamental, new insights into the fate of perturbed extremal black holes and the transition between black holes and naked singularities.

The late-time analysis of gravitational radiation: Gravitational radiation provides an observational window into deep mathematical aspects of general relativity. In this proposal, we investigate a key feature that is amenable to mathematical analysis: the existence of late-time tails in gravitational radiation.

Recent work by the PI and collaborators has lead to the first proof of the existence of late-time tails in a toy model setting, also known as Price's Law. This proposal considers the full setting of the nonlinear Einstein equations via the analysis of late-time tails in the dynamics of perturbations of both flat spacetime and black hole spacetimes. A successful resolution would have important implications for the Strong Cosmic Censorship conjecture."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2023-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

UNIVERSITAET LEIPZIG
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 497 500,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 497 500,00

Beneficiarios (1)

Mi folleto 0 0